14 KiB
25 | 内存持续上升,我该如何排查问题?
你好,我是刘超。
我想你肯定遇到过内存溢出,或是内存使用率过高的问题。碰到内存持续上升的情况,其实我们很难从业务日志中查看到具体的问题,那么面对多个进程以及大量业务线程,我们该如何精准地找到背后的原因呢?
常用的监控和诊断内存工具
工欲善其事,必先利其器。平时排查内存性能瓶颈时,我们往往需要用到一些Linux命令行或者JDK工具来辅助我们监测系统或者虚拟机内存的使用情况,下面我就来介绍几种好用且常用的工具。
Linux命令行工具之top命令
top命令是我们在Linux下最常用的命令之一,它可以实时显示正在执行进程的CPU使用率、内存使用率以及系统负载等信息。其中上半部分显示的是系统的统计信息,下半部分显示的是进程的使用率统计信息。
除了简单的top之外,我们还可以通过top -Hp pid查看具体线程使用系统资源情况:
Linux命令行工具之vmstat命令
vmstat是一款指定采样周期和次数的功能性监测工具,我们可以看到,它不仅可以统计内存的使用情况,还可以观测到CPU的使用率、swap的使用情况。但vmstat一般很少用来查看内存的使用情况,而是经常被用来观察进程的上下文切换。
- r:等待运行的进程数;
- b:处于非中断睡眠状态的进程数;
- swpd:虚拟内存使用情况;
- free:空闲的内存;
- buff:用来作为缓冲的内存数;
- si:从磁盘交换到内存的交换页数量;
- so:从内存交换到磁盘的交换页数量;
- bi:发送到块设备的块数;
- bo:从块设备接收到的块数;
- in:每秒中断数;
- cs:每秒上下文切换次数;
- us:用户CPU使用时间;
- sy:内核CPU系统使用时间;
- id:空闲时间;
- wa:等待I/O时间;
- st:运行虚拟机窃取的时间。
Linux命令行工具之pidstat命令
pidstat是Sysstat中的一个组件,也是一款功能强大的性能监测工具,我们可以通过命令:yum install sysstat安装该监控组件。之前的top和vmstat两个命令都是监测进程的内存、CPU以及I/O使用情况,而pidstat命令则是深入到线程级别。
通过pidstat -help命令,我们可以查看到有以下几个常用的参数来监测线程的性能:
常用参数:
- -u:默认的参数,显示各个进程的cpu使用情况;
- -r:显示各个进程的内存使用情况;
- -d:显示各个进程的I/O使用情况;
- -w:显示每个进程的上下文切换情况;
- -p:指定进程号;
- -t:显示进程中线程的统计信息。
我们可以通过相关命令(例如ps或jps)查询到相关进程ID,再运行以下命令来监测该进程的内存使用情况:
其中pidstat的参数-p用于指定进程ID,-r表示监控内存的使用情况,1表示每秒的意思,3则表示采样次数。
其中显示的几个关键指标的含义是:
- Minflt/s:任务每秒发生的次要错误,不需要从磁盘中加载页;
- Majflt/s:任务每秒发生的主要错误,需要从磁盘中加载页;
- VSZ:虚拟地址大小,虚拟内存使用KB;
- RSS:常驻集合大小,非交换区内存使用KB。
如果我们需要继续查看该进程下的线程内存使用率,则在后面添加-t指令即可:
我们知道,Java是基于JVM上运行的,大部分内存都是在JVM的用户内存中创建的,所以除了通过以上Linux命令来监控整个服务器内存的使用情况之外,我们更需要知道JVM中的内存使用情况。JDK中就自带了很多命令工具可以监测到JVM的内存分配以及使用情况。
JDK工具之jstat命令
jstat可以监测Java应用程序的实时运行情况,包括堆内存信息以及垃圾回收信息。我们可以运行jstat -help查看一些关键参数信息:
再通过jstat -option查看jstat有哪些操作:
- -class:显示ClassLoad的相关信息;
- -compiler:显示JIT编译的相关信息;
- -gc:显示和gc相关的堆信息;
- -gccapacity:显示各个代的容量以及使用情况;
- -gcmetacapacity:显示Metaspace的大小;
- -gcnew:显示新生代信息;
- -gcnewcapacity:显示新生代大小和使用情况;
- -gcold:显示老年代和永久代的信息;
- -gcoldcapacity :显示老年代的大小;
- -gcutil:显示垃圾收集信息;
- -gccause:显示垃圾回收的相关信息(通-gcutil),同时显示最后一次或当前正在发生的垃圾回收的诱因;
- -printcompilation:输出JIT编译的方法信息。
它的功能比较多,在这里我例举一个常用功能,如何使用jstat查看堆内存的使用情况。我们可以用jstat -gc pid查看:
- S0C:年轻代中To Survivor的容量(单位KB);
- S1C:年轻代中From Survivor的容量(单位KB);
- S0U:年轻代中To Survivor目前已使用空间(单位KB);
- S1U:年轻代中From Survivor目前已使用空间(单位KB);
- EC:年轻代中Eden的容量(单位KB);
- EU:年轻代中Eden目前已使用空间(单位KB);
- OC:Old代的容量(单位KB);
- OU:Old代目前已使用空间(单位KB);
- MC:Metaspace的容量(单位KB);
- MU:Metaspace目前已使用空间(单位KB);
- YGC:从应用程序启动到采样时年轻代中gc次数;
- YGCT:从应用程序启动到采样时年轻代中gc所用时间(s);
- FGC:从应用程序启动到采样时old代(全gc)gc次数;
- FGCT:从应用程序启动到采样时old代(全gc)gc所用时间(s);
- GCT:从应用程序启动到采样时gc用的总时间(s)。
JDK工具之jstack命令
这个工具在模块三的答疑课堂中介绍过,它是一种线程堆栈分析工具,最常用的功能就是使用 jstack pid 命令查看线程的堆栈信息,通常会结合top -Hp pid 或 pidstat -p pid -t一起查看具体线程的状态,也经常用来排查一些死锁的异常。
每个线程堆栈的信息中,都可以查看到线程ID、线程的状态(wait、sleep、running 等状态)以及是否持有锁等。
JDK工具之jmap命令
在第23讲中我们使用过jmap查看堆内存初始化配置信息以及堆内存的使用情况。那么除了这个功能,我们其实还可以使用jmap输出堆内存中的对象信息,包括产生了哪些对象,对象数量多少等。
我们可以用jmap来查看堆内存初始化配置信息以及堆内存的使用情况:
我们可以使用jmap -histo[:live] pid查看堆内存中的对象数目、大小统计直方图,如果带上live则只统计活对象:
我们可以通过jmap命令把堆内存的使用情况dump到文件中:
我们可以将文件下载下来,使用 MAT 工具打开文件进行分析:
下面我们用一个实战案例来综合使用下刚刚介绍的几种工具,具体操作一下如何分析一个内存泄漏问题。
实战演练
我们平时遇到的内存溢出问题一般分为两种,一种是由于大峰值下没有限流,瞬间创建大量对象而导致的内存溢出;另一种则是由于内存泄漏而导致的内存溢出。
使用限流,我们一般就可以解决第一种内存溢出问题,但其实很多时候,内存溢出往往是内存泄漏导致的,这种问题就是程序的BUG,我们需要及时找到问题代码。
下面我模拟了一个内存泄漏导致的内存溢出案例,我们来实践一下。
我们知道,ThreadLocal的作用是提供线程的私有变量,这种变量可以在一个线程的整个生命周期中传递,可以减少一个线程在多个函数或类中创建公共变量来传递信息,避免了复杂度。但在使用时,如果ThreadLocal使用不恰当,就可能导致内存泄漏。
这个案例的场景就是ThreadLocal,下面我们模拟对每个线程设置一个本地变量。运行以下代码,系统一会儿就发送了内存溢出异常:
@RequestMapping(value = "/test0")
public String test0(HttpServletRequest request) {
ThreadLocal<Byte[]> localVariable = new ThreadLocal<Byte[]>();
localVariable.set(new Byte[4096*1024]);// 为线程添加变量
return "success";
}
在启动应用程序之前,我们可以通过HeapDumpOnOutOfMemoryError和HeapDumpPath这两个参数开启堆内存异常日志,通过以下命令启动应用程序:
java -jar -Xms1000m -Xmx4000m -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/tmp/heapdump.hprof -XX:+PrintGCTimeStamps -XX:+PrintGCDetails -Xloggc:/tmp/heapTest.log heapTest-0.0.1-SNAPSHOT.jar
首先,请求test0链接10000次,这个时候我们请求test0的接口报异常了。
通过日志,我们很好分辨这是一个内存溢出异常。我们首先通过Linux系统命令查看进程在整个系统中内存的使用率是多少,最简单就是top命令了。
从top命令查看进程的内存使用情况,可以发现在机器只有8G内存且只分配了4G内存给Java进程的情况下,Java进程内存使用率已经达到了55%,再通过top -Hp pid查看具体线程占用系统资源情况。
再通过jstack pid查看具体线程的堆栈信息,可以发现该线程一直处于 TIMED_WAITING 状态,此时CPU使用率和负载并没有出现异常,我们可以排除死锁或I/O阻塞的异常问题了。
我们再通过jmap查看堆内存的使用情况,可以发现,老年代的使用率几乎快占满了,而且内存一直得不到释放:
通过以上堆内存的情况,我们基本可以判断系统发生了内存泄漏。下面我们就需要找到具体是什么对象一直无法回收,什么原因导致了内存泄漏。
我们需要查看具体的堆内存对象,看看是哪个对象占用了堆内存,可以通过jmap查看存活对象的数量:
Byte对象占用内存明显异常,说明代码中Byte对象存在内存泄漏,我们在启动时,已经设置了dump文件,通过MAT打开dump的内存日志文件,我们可以发现MAT已经提示了byte内存异常:
再点击进入到Histogram页面,可以查看到对象数量排序,我们可以看到Byte[]数组排在了第一位,选中对象后右击选择with incomming reference功能,可以查看到具体哪个对象引用了这个对象。
在这里我们就可以很明显地查看到是ThreadLocal这块的代码出现了问题。
总结
在一些比较简单的业务场景下,排查系统性能问题相对来说简单,且容易找到具体原因。但在一些复杂的业务场景下,或是一些开源框架下的源码问题,相对来说就很难排查了,有时候通过工具只能猜测到可能是某些地方出现了问题,而实际排查则要结合源码做具体分析。
可以说没有捷径,排查线上的性能问题本身就不是一件很简单的事情,除了将今天介绍的这些工具融会贯通,还需要我们不断地去累积经验,真正做到性能调优。
思考题
除了以上我讲到的那些排查内存性能瓶颈的工具之外,你知道要在代码中对JVM的内存进行监控,常用的方法是什么?
期待在留言区看到你的分享。也欢迎你点击“请朋友读”,把今天的内容分享给身边的朋友,邀请他一起讨论。