gitbook/Redis核心技术与实战/docs/284291.md
2022-09-03 22:05:03 +08:00

21 KiB
Raw Permalink Blame History

15 | 消息队列的考验Redis有哪些解决方案

你好,我是蒋德钧。

现在的互联网应用基本上都是采用分布式系统架构进行设计的,而很多分布式系统必备的一个基础软件就是消息队列。

消息队列要能支持组件通信消息的快速读写而Redis本身支持数据的高速访问正好可以满足消息队列的读写性能需求。不过除了性能消息队列还有其他的要求所以很多人都很关心一个问题“Redis适合做消息队列吗

其实,这个问题的背后,隐含着两方面的核心问题:

  • 消息队列的消息存取需求是什么?
  • Redis如何实现消息队列的需求

这节课我们就来聊一聊消息队列的特征和Redis提供的消息队列方案。只有把这两方面的知识和实践经验串连起来才能彻底理解基于Redis实现消息队列的技术实践。以后当你需要为分布式系统组件做消息队列选型时就可以根据组件通信量和消息通信速度的要求选择出适合的Redis消息队列方案了。

我们先来看下第一个问题:消息队列的消息读取有什么样的需求?

消息队列的消息存取需求

我先介绍一下消息队列存取消息的过程。在分布式系统中,当两个组件要基于消息队列进行通信时,一个组件会把要处理的数据以消息的形式传递给消息队列,然后,这个组件就可以继续执行其他操作了;远端的另一个组件从消息队列中把消息读取出来,再在本地进行处理。

为了方便你理解,我还是借助一个例子来解释一下。

假设组件1需要对采集到的数据进行求和计算并写入数据库但是消息到达的速度很快组件1没有办法及时地既做采集又做计算并且写入数据库。所以我们可以使用基于消息队列的通信让组件1把数据x和y保存为JSON格式的消息再发到消息队列这样它就可以继续接收新的数据了。组件2则异步地从消息队列中把数据读取出来在服务器2上进行求和计算后再写入数据库。这个过程如下图所示

我们一般把消息队列中发送消息的组件称为生产者例子中的组件1把接收消息的组件称为消费者例子中的组件2下图展示了一个通用的消息队列的架构模型

在使用消息队列时,消费者可以异步读取生产者消息,然后再进行处理。这样一来,即使生产者发送消息的速度远远超过了消费者处理消息的速度,生产者已经发送的消息也可以缓存在消息队列中,避免阻塞生产者,这是消息队列作为分布式组件通信的一大优势。

不过,消息队列在存取消息时,必须要满足三个需求,分别是消息保序、处理重复的消息和保证消息可靠性。

需求一:消息保序

虽然消费者是异步处理消息,但是,消费者仍然需要按照生产者发送消息的顺序来处理消息,避免后发送的消息被先处理了。对于要求消息保序的场景来说,一旦出现这种消息被乱序处理的情况,就可能会导致业务逻辑被错误执行,从而给业务方造成损失。

我们来看一个更新商品库存的场景。

假设生产者负责接收库存更新请求消费者负责实际更新库存现有库存量是10。生产者先后发送了消息1和消息2消息1要把商品X的库存记录更新为5消息2是把商品X库存更新为3。如果消息1和2在消息队列中无法保序出现消息2早于消息1被处理的情况那么很显然库存更新就出错了。这是业务应用无法接受的。

面对这种情况,你可能会想到一种解决方案:不要把更新后的库存量作为生产者发送的消息,而是把库存扣除值作为消息的内容。这样一来消息1是扣减库存量5消息2是扣减库存量2。如果消息1和消息2之间没有库存查询请求的话即使消费者先处理消息2再处理消息1这个方案也能够保证最终的库存量是正确的也就是库存量为3。

但是我们还需要考虑这样一种情况假如消费者收到了这样三条消息消息1是扣减库存量5消息2是读取库存量消息3是扣减库存量2此时如果消费者先处理了消息3把库存量扣减2那么库存量就变成了8。然后消费者处理了消息2读取当前的库存量是8这就会出现库存量查询不正确的情况。从业务应用层面看消息1、2、3应该是顺序执行的所以消息2查询到的应该是扣减了5以后的库存量而不是扣减了2以后的库存量。所以用库存扣除值作为消息的方案在消息中同时包含读写操作的场景下会带来数据读取错误的问题。而且这个方案还会面临一个问题那就是重复消息处理。

需求二:重复消息处理

消费者从消息队列读取消息时,有时会因为网络堵塞而出现消息重传的情况。此时,消费者可能会收到多条重复的消息。对于重复的消息,消费者如果多次处理的话,就可能造成一个业务逻辑被多次执行,如果业务逻辑正好是要修改数据,那就会出现数据被多次修改的问题了。

还是以库存更新为例假设消费者收到了一次消息1要扣减库存量5然后又收到了一次消息1那么如果消费者无法识别这两条消息实际是一条相同消息的话就会执行两次扣减库存量5的操作此时库存量就不对了。这当然也是无法接受的。

需求三:消息可靠性保证

另外,消费者在处理消息的时候,还可能出现因为故障或宕机导致消息没有处理完成的情况。此时,消息队列需要能提供消息可靠性的保证,也就是说,当消费者重启后,可以重新读取消息再次进行处理,否则,就会出现消息漏处理的问题了。

Redis的List和Streams两种数据类型就可以满足消息队列的这三个需求。我们先来了解下基于List的消息队列实现方法。

基于List的消息队列解决方案

List本身就是按先进先出的顺序对数据进行存取的所以如果使用List作为消息队列保存消息的话就已经能满足消息保序的需求了。

具体来说生产者可以使用LPUSH命令把要发送的消息依次写入List而消费者则可以使用RPOP命令从List的另一端按照消息的写入顺序依次读取消息并进行处理。

如下图所示生产者先用LPUSH写入了两条库存消息分别是5和3表示要把库存更新为5和3消费者则用RPOP把两条消息依次读出然后进行相应的处理。

不过,在消费者读取数据时,有一个潜在的性能风险点。

在生产者往List中写入数据时List并不会主动地通知消费者有新消息写入如果消费者想要及时处理消息就需要在程序中不停地调用RPOP命令比如使用一个while(1)循环。如果有新消息写入RPOP命令就会返回结果否则RPOP命令返回空值再继续循环。

所以即使没有新消息写入List消费者也要不停地调用RPOP命令这就会导致消费者程序的CPU一直消耗在执行RPOP命令上带来不必要的性能损失。

为了解决这个问题Redis提供了BRPOP命令。BRPOP命令也称为阻塞式读取客户端在没有读到队列数据时自动阻塞直到有新的数据写入队列再开始读取新数据。和消费者程序自己不停地调用RPOP命令相比这种方式能节省CPU开销。

消息保序的问题解决了,接下来,我们还需要考虑解决重复消息处理的问题,这里其实有一个要求:消费者程序本身能对重复消息进行判断。

一方面消息队列要能给每一个消息提供全局唯一的ID号另一方面消费者程序要把已经处理过的消息的ID号记录下来。

当收到一条消息后消费者程序就可以对比收到的消息ID和记录的已处理过的消息ID来判断当前收到的消息有没有经过处理。如果已经处理过那么消费者程序就不再进行处理了。这种处理特性也称为幂等性幂等性就是指对于同一条消息消费者收到一次的处理结果和收到多次的处理结果是一致的。

不过List本身是不会为每个消息生成ID号的所以消息的全局唯一ID号就需要生产者程序在发送消息前自行生成。生成之后我们在用LPUSH命令把消息插入List时需要在消息中包含这个全局唯一ID。

例如我们执行以下命令就把一条全局ID为101030001、库存量为5的消息插入了消息队列

LPUSH mq "101030001:stock:5"
(integer) 1

最后我们再来看下List类型是如何保证消息可靠性的。

当消费者程序从List中读取一条消息后List就不会再留存这条消息了。所以如果消费者程序在处理消息的过程出现了故障或宕机就会导致消息没有处理完成那么消费者程序再次启动后就没法再次从List中读取消息了。

为了留存消息List类型提供了BRPOPLPUSH命令这个命令的作用是让消费者程序从一个List中读取消息同时Redis会把这个消息再插入到另一个List可以叫作备份List留存。这样一来如果消费者程序读了消息但没能正常处理等它重启后就可以从备份List中重新读取消息并进行处理了。

我画了一张示意图展示了使用BRPOPLPUSH命令留存消息以及消费者再次读取消息的过程你可以看下。

生产者先用LPUSH把消息“5”“3”插入到消息队列mq中。消费者程序使用BRPOPLPUSH命令读取消息“5”同时消息“5”还会被Redis插入到mqback队列中。如果消费者程序处理消息“5”时宕机了等它重启后可以从mqback中再次读取消息“5”继续处理。

好了到这里你可以看到基于List类型我们可以满足分布式组件对消息队列的三大需求。但是在用List做消息队列时我们还可能遇到过一个问题生产者消息发送很快而消费者处理消息的速度比较慢这就导致List中的消息越积越多给Redis的内存带来很大压力

这个时候我们希望启动多个消费者程序组成一个消费组一起分担处理List中的消息。但是List类型并不支持消费组的实现。那么还有没有更合适的解决方案呢这就要说到Redis从5.0版本开始提供的Streams数据类型了。

和List相比Streams同样能够满足消息队列的三大需求。而且它还支持消费组形式的消息读取。接下来我们就来了解下Streams的使用方法。

基于Streams的消息队列解决方案

Streams是Redis专门为消息队列设计的数据类型它提供了丰富的消息队列操作命令。

  • XADD插入消息保证有序可以自动生成全局唯一ID
  • XREAD用于读取消息可以按ID读取数据
  • XREADGROUP按消费组形式读取消息
  • XPENDING和XACKXPENDING命令可以用来查询每个消费组内所有消费者已读取但尚未确认的消息而XACK命令用于向消息队列确认消息处理已完成。

首先我们来学习下Streams类型存取消息的操作XADD。

XADD命令可以往消息队列中插入新消息消息的格式是键-值对形式。对于插入的每一条消息Streams可以自动为其生成一个全局唯一的ID。

比如说我们执行下面的命令就可以往名称为mqstream的消息队列中插入一条消息消息的键是repo值是5。其中消息队列名称后面的*表示让Redis为插入的数据自动生成一个全局唯一的ID例如“1599203861727-0”。当然我们也可以不用*直接在消息队列名称后自行设定一个ID号只要保证这个ID号是全局唯一的就行。不过相比自行设定ID号使用*会更加方便高效。

XADD mqstream * repo 5
"1599203861727-0"

可以看到消息的全局唯一ID由两部分组成第一部分“1599203861727”是数据插入时以毫秒为单位计算的当前服务器时间第二部分表示插入消息在当前毫秒内的消息序号这是从0开始编号的。例如“1599203861727-0”就表示在“1599203861727”毫秒内的第1条消息。

当消费者需要读取消息时可以直接使用XREAD命令从消息队列中读取。

XREAD在读取消息时可以指定一个消息ID并从这个消息ID的下一条消息开始进行读取。

例如我们可以执行下面的命令从ID号为1599203861727-0的消息开始读取后续的所有消息示例中一共3条

XREAD BLOCK 100 STREAMS  mqstream 1599203861727-0
1) 1) "mqstream"
   2) 1) 1) "1599274912765-0"
         2) 1) "repo"
            2) "3"
      2) 1) "1599274925823-0"
         2) 1) "repo"
            2) "2"
      3) 1) "1599274927910-0"
         2) 1) "repo"
            2) "1"

另外消费者也可以在调用XRAED时设定block配置项实现类似于BRPOP的阻塞读取操作。当消息队列中没有消息时一旦设置了block配置项XREAD就会阻塞阻塞的时长可以在block配置项进行设置。

举个例子,我们来看一下下面的命令,其中,命令最后的“$”符号表示读取最新的消息同时我们设置了block 10000的配置项10000的单位是毫秒表明XREAD在读取最新消息时如果没有消息到来XREAD将阻塞10000毫秒即10秒然后再返回。下面命令中的XREAD执行后消息队列mqstream中一直没有消息所以XREAD在10秒后返回空值nil

XREAD block 10000 streams mqstream $
(nil)
(10.00s)

刚刚讲到的这些操作是List也支持的接下来我们再来学习下Streams特有的功能。

Streams本身可以使用XGROUP创建消费组创建消费组之后Streams可以使用XREADGROUP命令让消费组内的消费者读取消息

例如我们执行下面的命令创建一个名为group1的消费组这个消费组消费的消息队列是mqstream。

XGROUP create mqstream group1 0
OK

然后我们再执行一段命令让group1消费组里的消费者consumer1从mqstream中读取所有消息其中命令最后的参数“>”表示从第一条尚未被消费的消息开始读取。因为在consumer1读取消息前group1中没有其他消费者读取过消息所以consumer1就得到mqstream消息队列中的所有消息了一共4条

XREADGROUP group group1 consumer1 streams mqstream >
1) 1) "mqstream"
   2) 1) 1) "1599203861727-0"
         2) 1) "repo"
            2) "5"
      2) 1) "1599274912765-0"
         2) 1) "repo"
            2) "3"
      3) 1) "1599274925823-0"
         2) 1) "repo"
            2) "2"
      4) 1) "1599274927910-0"
         2) 1) "repo"
            2) "1"

需要注意的是消息队列中的消息一旦被消费组里的一个消费者读取了就不能再被该消费组内的其他消费者读取了。比如说我们执行完刚才的XREADGROUP命令后再执行下面的命令让group1内的consumer2读取消息时consumer2读到的就是空值因为消息已经被consumer1读取完了如下所示

XREADGROUP group group1 consumer2  streams mqstream 0
1) 1) "mqstream"
   2) (empty list or set)

使用消费组的目的是让组内的多个消费者共同分担读取消息所以我们通常会让每个消费者读取部分消息从而实现消息读取负载在多个消费者间是均衡分布的。例如我们执行下列命令让group2中的consumer1、2、3各自读取一条消息。

XREADGROUP group group2 consumer1 count 1 streams mqstream >
1) 1) "mqstream"
   2) 1) 1) "1599203861727-0"
         2) 1) "repo"
            2) "5"

XREADGROUP group group2 consumer2 count 1 streams mqstream >
1) 1) "mqstream"
   2) 1) 1) "1599274912765-0"
         2) 1) "repo"
            2) "3"

XREADGROUP group group2 consumer3 count 1 streams mqstream >
1) 1) "mqstream"
   2) 1) 1) "1599274925823-0"
         2) 1) "repo"
            2) "2"

为了保证消费者在发生故障或宕机再次重启后仍然可以读取未处理完的消息Streams会自动使用内部队列也称为PENDING List留存消费组里每个消费者读取的消息直到消费者使用XACK命令通知Streams“消息已经处理完成”。如果消费者没有成功处理消息它就不会给Streams发送XACK命令消息仍然会留存。此时消费者可以在重启后用XPENDING命令查看已读取、但尚未确认处理完成的消息。

例如我们来查看一下group2中各个消费者已读取、但尚未确认的消息个数。其中XPENDING返回结果的第二、三行分别表示group2中所有消费者读取的消息最小ID和最大ID。

XPENDING mqstream group2
1) (integer) 3
2) "1599203861727-0"
3) "1599274925823-0"
4) 1) 1) "consumer1"
      2) "1"
   2) 1) "consumer2"
      2) "1"
   3) 1) "consumer3"
      2) "1"

如果我们还需要进一步查看某个消费者具体读取了哪些数据,可以执行下面的命令:

XPENDING mqstream group2 - + 10 consumer2
1) 1) "1599274912765-0"
   2) "consumer2"
   3) (integer) 513336
   4) (integer) 1

可以看到consumer2已读取的消息的ID是1599274912765-0。

一旦消息1599274912765-0被consumer2处理了consumer2就可以使用XACK命令通知Streams然后这条消息就会被删除。当我们再使用XPENDING命令查看时就可以看到consumer2已经没有已读取、但尚未确认处理的消息了。

 XACK mqstream group2 1599274912765-0
(integer) 1
XPENDING mqstream group2 - + 10 consumer2
(empty list or set)

现在我们就知道了用Streams实现消息队列的方法我还想再强调下Streams是Redis 5.0专门针对消息队列场景设计的数据类型如果你的Redis是5.0及5.0以后的版本就可以考虑把Streams用作消息队列了。

小结

这节课,我们学习了分布式系统组件使用消息队列时的三大需求:消息保序、重复消息处理和消息可靠性保证,这三大需求可以进一步转换为对消息队列的三大要求:消息数据有序存取,消息数据具有全局唯一编号,以及消息数据在消费完成后被删除。

我画了一张表格汇总了用List和Streams实现消息队列的特点和区别。当然在实践的过程中你也可以根据新的积累进一步补充和完善这张表。

其实关于Redis是否适合做消息队列业界一直是有争论的。很多人认为要使用消息队列就应该采用Kafka、RabbitMQ这些专门面向消息队列场景的软件而Redis更加适合做缓存。

根据这些年做Redis研发工作的经验我的看法是Redis是一个非常轻量级的键值数据库部署一个Redis实例就是启动一个进程部署Redis集群也就是部署多个Redis实例。而Kafka、RabbitMQ部署时涉及额外的组件例如Kafka的运行就需要再部署ZooKeeper。相比Redis来说Kafka和RabbitMQ一般被认为是重量级的消息队列。

所以关于是否用Redis做消息队列的问题不能一概而论我们需要考虑业务层面的数据体量以及对性能、可靠性、可扩展性的需求。如果分布式系统中的组件消息通信量不大那么Redis只需要使用有限的内存空间就能满足消息存储的需求而且Redis的高性能特性能支持快速的消息读写不失为消息队列的一个好的解决方案。

每课一问

按照惯例我给你提个小问题。如果一个生产者发送给消息队列的消息需要被多个消费者进行读取和处理例如一个消息是一条从业务系统采集的数据既要被消费者1读取进行实时计算也要被消费者2读取并留存到分布式文件系统HDFS中以便后续进行历史查询你会使用Redis的什么数据类型来解决这个问题呢

欢迎在留言区写下你的思考和答案,如果觉得今天的内容对你有所帮助,也欢迎你帮我分享给更多人。我们下节课见。