gitbook/Redis核心技术与实战/docs/279649.md
2022-09-03 22:05:03 +08:00

16 KiB
Raw Permalink Blame History

11 | “万金油”的String为什么不好用了

你好,我是蒋德钧。

从今天开始我们就要进入“实践篇”了。接下来我们会用5节课的时间学习“数据结构”。我会介绍节省内存开销以及保存和统计海量数据的数据类型及其底层数据结构还会围绕典型的应用场景例如地址位置查询、时间序列数据库读写和消息队列存取跟你分享使用Redis的数据类型和module扩展功能来满足需求的具体方案。

今天我们先了解下String类型的内存空间消耗问题以及选择节省内存开销的数据类型的解决方案。

先跟你分享一个我曾经遇到的需求。

当时我们要开发一个图片存储系统要求这个系统能快速地记录图片ID和图片在存储系统中保存时的ID可以直接叫作图片存储对象ID。同时还要能够根据图片ID快速查找到图片存储对象ID。

因为图片数量巨大所以我们就用10位数来表示图片ID和图片存储对象ID例如图片ID为1101000051它在存储系统中对应的ID号是3301000051。

photo_id: 1101000051
photo_obj_id: 3301000051

可以看到图片ID和图片存储对象ID正好一一对应是典型的“键-单值”模式。所谓的“单值”就是指键值对中的值就是一个值而不是一个集合这和String类型提供的“一个键对应一个值的数据”的保存形式刚好契合。

而且String类型可以保存二进制字节流就像“万金油”一样只要把数据转成二进制字节数组就可以保存了。

所以我们的第一个方案就是用String保存数据。我们把图片ID和图片存储对象ID分别作为键值对的key和value来保存其中图片存储对象ID用了String类型。

刚开始我们保存了1亿张图片大约用了6.4GB的内存。但是随着图片数据量的不断增加我们的Redis内存使用量也在增加结果就遇到了大内存Redis实例因为生成RDB而响应变慢的问题。很显然String类型并不是一种好的选择我们还需要进一步寻找能节省内存开销的数据类型方案。

在这个过程中我深入地研究了String类型的底层结构找到了它内存开销大的原因对“万金油”的String类型有了全新的认知String类型并不是适用于所有场合的它有一个明显的短板就是它保存数据时所消耗的内存空间较多。

同时我还仔细研究了集合类型的数据结构。我发现集合类型有非常节省内存空间的底层实现结构但是集合类型保存的数据模式是一个键对应一系列值并不适合直接保存单值的键值对。所以我们就使用二级编码的方法实现了用集合类型保存单值键值对Redis实例的内存空间消耗明显下降了。

这节课我就把在解决这个问题时学到的经验和方法分享给你包括String类型的内存空间消耗在哪儿了、用什么数据结构可以节省内存以及如何用集合类型保存单值键值对。如果你在使用String类型时也遇到了内存空间消耗较多的问题就可以尝试下今天的解决方案了。

接下来我们先来看看String类型的内存都消耗在哪里了。

为什么String类型内存开销大

在刚才的案例中我们保存了1亿张图片的信息用了约6.4GB的内存一个图片ID和图片存储对象ID的记录平均用了64字节。

但问题是一组图片ID及其存储对象ID的记录实际只需要16字节就可以了。

我们来分析一下。图片ID和图片存储对象ID都是10位数我们可以用两个8字节的Long类型表示这两个ID。因为8字节的Long类型最大可以表示2的64次方的数值所以肯定可以表示10位数。但是为什么String类型却用了64字节呢

其实除了记录实际数据String类型还需要额外的内存空间记录数据长度、空间使用等信息这些信息也叫作元数据。当实际保存的数据较小时元数据的空间开销就显得比较大了有点“喧宾夺主”的意思。

那么String类型具体是怎么保存数据的呢我来解释一下。

当你保存64位有符号整数时String类型会把它保存为一个8字节的Long类型整数这种保存方式通常也叫作int编码方式。

但是当你保存的数据中包含字符时String类型就会用简单动态字符串Simple Dynamic StringSDS结构体来保存如下图所示

  • buf字节数组保存实际数据。为了表示字节数组的结束Redis会自动在数组最后加一个“\0”这就会额外占用1个字节的开销。
  • len占4个字节表示buf的已用长度。
  • alloc也占个4字节表示buf的实际分配长度一般大于len。

可以看到在SDS中buf保存实际数据而len和alloc本身其实是SDS结构体的额外开销。

另外对于String类型来说除了SDS的额外开销还有一个来自于RedisObject结构体的开销。

因为Redis的数据类型有很多而且不同数据类型都有些相同的元数据要记录比如最后一次访问的时间、被引用的次数等所以Redis会用一个RedisObject结构体来统一记录这些元数据同时指向实际数据。

一个RedisObject包含了8字节的元数据和一个8字节指针这个指针再进一步指向具体数据类型的实际数据所在例如指向String类型的SDS结构所在的内存地址可以看一下下面的示意图。关于RedisObject的具体结构细节我会在后面的课程中详细介绍现在你只要了解它的基本结构和元数据开销就行了。

为了节省内存空间Redis还对Long类型整数和SDS的内存布局做了专门的设计。

一方面当保存的是Long类型整数时RedisObject中的指针就直接赋值为整数数据了这样就不用额外的指针再指向整数了节省了指针的空间开销。

另一方面当保存的是字符串数据并且字符串小于等于44字节时RedisObject中的元数据、指针和SDS是一块连续的内存区域这样就可以避免内存碎片。这种布局方式也被称为embstr编码方式。

当然当字符串大于44字节时SDS的数据量就开始变多了Redis就不再把SDS和RedisObject布局在一起了而是会给SDS分配独立的空间并用指针指向SDS结构。这种布局方式被称为raw编码模式。

为了帮助你理解int、embstr和raw这三种编码模式我画了一张示意图如下所示

好了知道了RedisObject所包含的额外元数据开销现在我们就可以计算String类型的内存使用量了。

因为10位数的图片ID和图片存储对象ID是Long类型整数所以可以直接用int编码的RedisObject保存。每个int编码的RedisObject元数据部分占8字节指针部分被直接赋值为8字节的整数了。此时每个ID会使用16字节加起来一共是32字节。但是另外的32字节去哪儿了呢

我在第2讲中说过Redis会使用一个全局哈希表保存所有键值对哈希表的每一项是一个dictEntry的结构体用来指向一个键值对。dictEntry结构中有三个8字节的指针分别指向key、value以及下一个dictEntry三个指针共24字节如下图所示

但是这三个指针只有24字节为什么会占用了32字节呢这就要提到Redis使用的内存分配库jemalloc了。

jemalloc在分配内存时会根据我们申请的字节数N找一个比N大但是最接近N的2的幂次数作为分配的空间这样可以减少频繁分配的次数。

举个例子。如果你申请6字节空间jemalloc实际会分配8字节空间如果你申请24字节空间jemalloc则会分配32字节。所以在我们刚刚说的场景里dictEntry结构就占用了32字节。

好了到这儿你应该就能理解为什么用String类型保存图片ID和图片存储对象ID时需要用64个字节了。

你看明明有效信息只有16字节使用String类型保存时却需要64字节的内存空间有48字节都没有用于保存实际的数据。我们来换算下如果要保存的图片有1亿张那么1亿条的图片ID记录就需要6.4GB内存空间其中有4.8GB的内存空间都用来保存元数据了,额外的内存空间开销很大。那么,有没有更加节省内存的方法呢?

用什么数据结构可以节省内存?

Redis有一种底层数据结构叫压缩列表ziplist这是一种非常节省内存的结构。

我们先回顾下压缩列表的构成。表头有三个字段zlbytes、zltail和zllen分别表示列表长度、列表尾的偏移量以及列表中的entry个数。压缩列表尾还有一个zlend表示列表结束。

压缩列表之所以能节省内存就在于它是用一系列连续的entry保存数据。每个entry的元数据包括下面几部分。

  • prev_len表示前一个entry的长度。prev_len有两种取值情况1字节或5字节。取值1字节时表示上一个entry的长度小于254字节。虽然1字节的值能表示的数值范围是0到255但是压缩列表中zlend的取值默认是255因此就默认用255表示整个压缩列表的结束其他表示长度的地方就不能再用255这个值了。所以当上一个entry长度小于254字节时prev_len取值为1字节否则就取值为5字节。
  • len表示自身长度4字节
  • encoding表示编码方式1字节
  • content:保存实际数据。

这些entry会挨个儿放置在内存中不需要再用额外的指针进行连接这样就可以节省指针所占用的空间。

我们以保存图片存储对象ID为例来分析一下压缩列表是如何节省内存空间的。

每个entry保存一个图片存储对象ID8字节此时每个entry的prev_len只需要1个字节就行因为每个entry的前一个entry长度都只有8字节小于254字节。这样一来一个图片的存储对象ID所占用的内存大小是14字节1+4+1+8=14实际分配16字节。

Redis基于压缩列表实现了List、Hash和Sorted Set这样的集合类型这样做的最大好处就是节省了dictEntry的开销。当你用String类型时一个键值对就有一个dictEntry要用32字节空间。但采用集合类型时一个key就对应一个集合的数据能保存的数据多了很多但也只用了一个dictEntry这样就节省了内存。

这个方案听起来很好但还存在一个问题在用集合类型保存键值对时一个键对应了一个集合的数据但是在我们的场景中一个图片ID只对应一个图片的存储对象ID我们该怎么用集合类型呢换句话说在一个键对应一个值也就是单值键值对的情况下我们该怎么用集合类型来保存这种单值键值对呢

如何用集合类型保存单值的键值对?

在保存单值的键值对时可以采用基于Hash类型的二级编码方法。这里说的二级编码就是把一个单值的数据拆分成两部分前一部分作为Hash集合的key后一部分作为Hash集合的value这样一来我们就可以把单值数据保存到Hash集合中了。

以图片ID 1101000060和图片存储对象ID 3302000080为例我们可以把图片ID的前7位1101000作为Hash类型的键把图片ID的最后3位060和图片存储对象ID分别作为Hash类型值中的key和value。

按照这种设计方法我在Redis中插入了一组图片ID及其存储对象ID的记录并且用info命令查看了内存开销我发现增加一条记录后内存占用只增加了16字节如下所示

127.0.0.1:6379> info memory
# Memory
used_memory:1039120
127.0.0.1:6379> hset 1101000 060 3302000080
(integer) 1
127.0.0.1:6379> info memory
# Memory
used_memory:1039136

在使用String类型时每个记录需要消耗64字节这种方式却只用了16字节所使用的内存空间是原来的1/4满足了我们节省内存空间的需求。

不过你可能也会有疑惑“二级编码一定要把图片ID的前7位作为Hash类型的键把最后3位作为Hash类型值中的key吗其实二级编码方法中采用的ID长度是有讲究的

第2讲我介绍过Redis Hash类型的两种底层实现结构分别是压缩列表和哈希表。

那么Hash类型底层结构什么时候使用压缩列表什么时候使用哈希表呢其实Hash类型设置了用压缩列表保存数据时的两个阈值一旦超过了阈值Hash类型就会用哈希表来保存数据了。

这两个阈值分别对应以下两个配置项:

  • hash-max-ziplist-entries表示用压缩列表保存时哈希集合中的最大元素个数。
  • hash-max-ziplist-value表示用压缩列表保存时哈希集合中单个元素的最大长度。

如果我们往Hash集合中写入的元素个数超过了hash-max-ziplist-entries或者写入的单个元素大小超过了hash-max-ziplist-valueRedis就会自动把Hash类型的实现结构由压缩列表转为哈希表。

一旦从压缩列表转为了哈希表Hash类型就会一直用哈希表进行保存而不会再转回压缩列表了。在节省内存空间方面哈希表就没有压缩列表那么高效了。

为了能充分使用压缩列表的精简内存布局我们一般要控制保存在Hash集合中的元素个数。所以在刚才的二级编码中我们只用图片ID最后3位作为Hash集合的key也就保证了Hash集合的元素个数不超过1000同时我们把hash-max-ziplist-entries设置为1000这样一来Hash集合就可以一直使用压缩列表来节省内存空间了。

小结

这节课我们打破了对String的认知误区以前我们认为String是“万金油”什么场合都适用但是在保存的键值对本身占用的内存空间不大时例如这节课里提到的的图片ID和图片存储对象IDString类型的元数据开销就占据主导了这里面包括了RedisObject结构、SDS结构、dictEntry结构的内存开销。

针对这种情况我们可以使用压缩列表保存数据。当然使用Hash这种集合类型保存单值键值对的数据时我们需要将单值数据拆分成两部分分别作为Hash集合的键和值就像刚才案例中用二级编码来表示图片ID希望你能把这个方法用到自己的场景中。

最后,我还想再给你提供一个小方法:如果你想知道键值对采用不同类型保存时的内存开销,可以在这个网址里输入你的键值对长度和使用的数据类型,这样就能知道实际消耗的内存大小了。建议你把这个小工具用起来,它可以帮助你充分地节省内存。

每课一问

按照惯例给你提个小问题除了String类型和Hash类型你觉得还有其他合适的类型可以应用在这节课所说的保存图片的例子吗

欢迎在留言区写下你的思考和答案,我们一起交流讨论,也欢迎你把今天的内容分享给你的朋友。