183 lines
13 KiB
Markdown
183 lines
13 KiB
Markdown
# 07 | 案例篇:系统中出现大量不可中断进程和僵尸进程怎么办?(上)
|
||
|
||
你好,我是倪朋飞。
|
||
|
||
上一节,我用一个 Nginx+PHP 的案例,给你讲了服务器 CPU 使用率高的分析和应对方法。这里你一定要记得,当碰到无法解释的 CPU 使用率问题时,先要检查一下是不是短时应用在捣鬼。
|
||
|
||
短时应用的运行时间比较短,很难在 top 或者 ps 这类展示系统概要和进程快照的工具中发现,你需要使用记录事件的工具来配合诊断,比如 execsnoop 或者 perf top。
|
||
|
||
这些思路你不用刻意去背,多练习几次,多在操作中思考,你便能灵活运用。
|
||
|
||
另外,我们还讲到 CPU 使用率的类型。除了上一节提到的用户 CPU 之外,它还包括系统 CPU(比如上下文切换)、等待 I/O 的 CPU(比如等待磁盘的响应)以及中断 CPU(包括软中断和硬中断)等。
|
||
|
||
我们已经在上下文切换的文章中,一起分析了系统 CPU 使用率高的问题,剩下的等待 I/O 的 CPU 使用率(以下简称为 iowait)升高,也是最常见的一个服务器性能问题。今天我们就来看一个多进程I/O的案例,并分析这种情况。
|
||
|
||
## 进程状态
|
||
|
||
当 iowait 升高时,进程很可能因为得不到硬件的响应,而长时间处于不可中断状态。从 ps 或者 top 命令的输出中,你可以发现它们都处于 D 状态,也就是不可中断状态(Uninterruptible Sleep)。既然说到了进程的状态,进程有哪些状态你还记得吗?我们先来回顾一下。
|
||
|
||
top 和 ps 是最常用的查看进程状态的工具,我们就从 top 的输出开始。下面是一个 top 命令输出的示例,S列(也就是 Status 列)表示进程的状态。从这个示例里,你可以看到 R、D、Z、S、I 等几个状态,它们分别是什么意思呢?
|
||
|
||
```
|
||
$ top
|
||
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
|
||
28961 root 20 0 43816 3148 4040 R 3.2 0.0 0:00.01 top
|
||
620 root 20 0 37280 33676 908 D 0.3 0.4 0:00.01 app
|
||
1 root 20 0 160072 9416 6752 S 0.0 0.1 0:37.64 systemd
|
||
1896 root 20 0 0 0 0 Z 0.0 0.0 0:00.00 devapp
|
||
2 root 20 0 0 0 0 S 0.0 0.0 0:00.10 kthreadd
|
||
4 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 kworker/0:0H
|
||
6 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 mm_percpu_wq
|
||
7 root 20 0 0 0 0 S 0.0 0.0 0:06.37 ksoftirqd/0
|
||
|
||
```
|
||
|
||
我们挨个来看一下:
|
||
|
||
* **R** 是 Running 或 Runnable 的缩写,表示进程在 CPU 的就绪队列中,正在运行或者正在等待运行。
|
||
|
||
* **D** 是 Disk Sleep 的缩写,也就是不可中断状态睡眠(Uninterruptible Sleep),一般表示进程正在跟硬件交互,并且交互过程不允许被其他进程或中断打断。
|
||
|
||
* **Z** 是 Zombie 的缩写,如果你玩过“植物大战僵尸”这款游戏,应该知道它的意思。它表示僵尸进程,也就是进程实际上已经结束了,但是父进程还没有回收它的资源(比如进程的描述符、PID 等)。
|
||
|
||
* **S** 是 Interruptible Sleep 的缩写,也就是可中断状态睡眠,表示进程因为等待某个事件而被系统挂起。当进程等待的事件发生时,它会被唤醒并进入 R 状态。
|
||
|
||
* **I** 是 Idle 的缩写,也就是空闲状态,用在不可中断睡眠的内核线程上。前面说了,硬件交互导致的不可中断进程用 D 表示,但对某些内核线程来说,它们有可能实际上并没有任何负载,用 Idle 正是为了区分这种情况。要注意,D 状态的进程会导致平均负载升高, I 状态的进程却不会。
|
||
|
||
|
||
当然了,上面的示例并没有包括进程的所有状态。除了以上 5 个状态,进程还包括下面这2个状态。
|
||
|
||
第一个是 **T 或者 t**,也就是 Stopped 或 Traced 的缩写,表示进程处于暂停或者跟踪状态。
|
||
|
||
向一个进程发送 SIGSTOP 信号,它就会因响应这个信号变成暂停状态(Stopped);再向它发送 SIGCONT 信号,进程又会恢复运行(如果进程是终端里直接启动的,则需要你用 fg 命令,恢复到前台运行)。
|
||
|
||
而当你用调试器(如 gdb)调试一个进程时,在使用断点中断进程后,进程就会变成跟踪状态,这其实也是一种特殊的暂停状态,只不过你可以用调试器来跟踪并按需要控制进程的运行。
|
||
|
||
另一个是 **X**,也就是 Dead 的缩写,表示进程已经消亡,所以你不会在 top 或者 ps 命令中看到它。
|
||
|
||
了解了这些,我们再回到今天的主题。先看不可中断状态,这其实是为了保证进程数据与硬件状态一致,并且正常情况下,不可中断状态在很短时间内就会结束。所以,短时的不可中断状态进程,我们一般可以忽略。
|
||
|
||
但如果系统或硬件发生了故障,进程可能会在不可中断状态保持很久,甚至导致系统中出现大量不可中断进程。这时,你就得注意下,系统是不是出现了 I/O 等性能问题。
|
||
|
||
再看僵尸进程,这是多进程应用很容易碰到的问题。正常情况下,当一个进程创建了子进程后,它应该通过系统调用 wait() 或者 waitpid() 等待子进程结束,回收子进程的资源;而子进程在结束时,会向它的父进程发送 SIGCHLD 信号,所以,父进程还可以注册 SIGCHLD 信号的处理函数,异步回收资源。
|
||
|
||
如果父进程没这么做,或是子进程执行太快,父进程还没来得及处理子进程状态,子进程就已经提前退出,那这时的子进程就会变成僵尸进程。换句话说,父亲应该一直对儿子负责,善始善终,如果不作为或者跟不上,都会导致“问题少年”的出现。
|
||
|
||
通常,僵尸进程持续的时间都比较短,在父进程回收它的资源后就会消亡;或者在父进程退出后,由 init 进程回收后也会消亡。
|
||
|
||
一旦父进程没有处理子进程的终止,还一直保持运行状态,那么子进程就会一直处于僵尸状态。大量的僵尸进程会用尽 PID 进程号,导致新进程不能创建,所以这种情况一定要避免。
|
||
|
||
## 案例分析
|
||
|
||
接下来,我将用一个多进程应用的案例,带你分析大量不可中断状态和僵尸状态进程的问题。这个应用基于 C 开发,由于它的编译和运行步骤比较麻烦,我把它打包成了一个 [Docker 镜像](https://github.com/feiskyer/linux-perf-examples/tree/master/high-iowait-process)。这样,你只需要运行一个 Docker 容器就可以得到模拟环境。
|
||
|
||
### 你的准备
|
||
|
||
下面的案例仍然基于 Ubuntu 18.04,同样适用于其他的 Linux 系统。我使用的案例环境如下所示:
|
||
|
||
* 机器配置:2 CPU,8GB 内存
|
||
|
||
* 预先安装 docker、sysstat、dstat 等工具,如 apt install [docker.io](http://docker.io) dstat sysstat
|
||
|
||
|
||
这里,dstat 是一个新的性能工具,它吸收了 vmstat、iostat、ifstat 等几种工具的优点,可以同时观察系统的 CPU、磁盘 I/O、网络以及内存使用情况。
|
||
|
||
接下来,我们打开一个终端,SSH 登录到机器上,并安装上述工具。
|
||
|
||
注意,以下所有命令都默认以 root 用户运行,如果你用普通用户身份登陆系统,请运行 sudo su root 命令切换到 root 用户。
|
||
|
||
如果安装过程有问题,你可以先上网搜索解决,实在解决不了的,记得在留言区向我提问。
|
||
|
||
> 温馨提示:案例应用的核心代码逻辑比较简单,你可能一眼就能看出问题,但实际生产环境中的源码就复杂多了。所以,我依旧建议,操作之前别看源码,避免先入为主,而要把它当成一个黑盒来分析,这样你可以更好地根据现象分析问题。你姑且当成你工作中的一次演练,这样效果更佳。
|
||
|
||
### 操作和分析
|
||
|
||
安装完成后,我们首先执行下面的命令运行案例应用:
|
||
|
||
```
|
||
$ docker run --privileged --name=app -itd feisky/app:iowait
|
||
|
||
```
|
||
|
||
然后,输入 ps 命令,确认案例应用已正常启动。如果一切正常,你应该可以看到如下所示的输出:
|
||
|
||
```
|
||
$ ps aux | grep /app
|
||
root 4009 0.0 0.0 4376 1008 pts/0 Ss+ 05:51 0:00 /app
|
||
root 4287 0.6 0.4 37280 33660 pts/0 D+ 05:54 0:00 /app
|
||
root 4288 0.6 0.4 37280 33668 pts/0 D+ 05:54 0:00 /app
|
||
|
||
```
|
||
|
||
从这个界面,我们可以发现多个 app 进程已经启动,并且它们的状态分别是 Ss+ 和 D+。其中,S 表示可中断睡眠状态,D 表示不可中断睡眠状态,我们在前面刚学过,那后面的 s 和 + 是什么意思呢?不知道也没关系,查一下man ps 就可以。现在记住,s 表示这个进程是一个会话的领导进程,而 + 表示前台进程组。
|
||
|
||
这里又出现了两个新概念,**进程组**和**会话**。它们用来管理一组相互关联的进程,意思其实很好理解。
|
||
|
||
* 进程组表示一组相互关联的进程,比如每个子进程都是父进程所在组的成员;
|
||
|
||
* 而会话是指共享同一个控制终端的一个或多个进程组。
|
||
|
||
|
||
比如,我们通过 SSH 登录服务器,就会打开一个控制终端(TTY),这个控制终端就对应一个会话。而我们在终端中运行的命令以及它们的子进程,就构成了一个个的进程组,其中,在后台运行的命令,构成后台进程组;在前台运行的命令,构成前台进程组。
|
||
|
||
明白了这些,我们再用 top 看一下系统的资源使用情况:
|
||
|
||
```
|
||
# 按下数字 1 切换到所有 CPU 的使用情况,观察一会儿按 Ctrl+C 结束
|
||
$ top
|
||
top - 05:56:23 up 17 days, 16:45, 2 users, load average: 2.00, 1.68, 1.39
|
||
Tasks: 247 total, 1 running, 79 sleeping, 0 stopped, 115 zombie
|
||
%Cpu0 : 0.0 us, 0.7 sy, 0.0 ni, 38.9 id, 60.5 wa, 0.0 hi, 0.0 si, 0.0 st
|
||
%Cpu1 : 0.0 us, 0.7 sy, 0.0 ni, 4.7 id, 94.6 wa, 0.0 hi, 0.0 si, 0.0 st
|
||
...
|
||
|
||
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
|
||
4340 root 20 0 44676 4048 3432 R 0.3 0.0 0:00.05 top
|
||
4345 root 20 0 37280 33624 860 D 0.3 0.0 0:00.01 app
|
||
4344 root 20 0 37280 33624 860 D 0.3 0.4 0:00.01 app
|
||
1 root 20 0 160072 9416 6752 S 0.0 0.1 0:38.59 systemd
|
||
...
|
||
|
||
```
|
||
|
||
从这里你能看出什么问题吗?细心一点,逐行观察,别放过任何一个地方。忘了哪行参数意思的话,也要及时返回去复习。
|
||
|
||
好的,如果你已经有了答案,那就继续往下走,看看跟我找的问题是否一样。这里,我发现了四个可疑的地方。
|
||
|
||
* 先看第一行的平均负载( Load Average),过去1 分钟、5 分钟和 15 分钟内的平均负载在依次减小,说明平均负载正在升高;而 1 分钟内的平均负载已经达到系统的 CPU 个数,说明系统很可能已经有了性能瓶颈。
|
||
|
||
* 再看第二行的 Tasks,有 1 个正在运行的进程,但僵尸进程比较多,而且还在不停增加,说明有子进程在退出时没被清理。
|
||
|
||
* 接下来看两个 CPU 的使用率情况,用户 CPU 和系统 CPU 都不高,但 iowait 分别是 60.5% 和 94.6%,好像有点儿不正常。
|
||
|
||
* 最后再看每个进程的情况, CPU 使用率最高的进程只有 0.3%,看起来并不高;但有两个进程处于 D 状态,它们可能在等待 I/O,但光凭这里并不能确定是它们导致了 iowait 升高。
|
||
|
||
|
||
我们把这四个问题再汇总一下,就可以得到很明确的两点:
|
||
|
||
* 第一点,iowait 太高了,导致系统的平均负载升高,甚至达到了系统 CPU 的个数。
|
||
|
||
* 第二点,僵尸进程在不断增多,说明有程序没能正确清理子进程的资源。
|
||
|
||
|
||
那么,碰到这两个问题该怎么办呢?结合我们前面分析问题的思路,你先自己想想,动手试试,下节课我来继续“分解”。
|
||
|
||
## 小结
|
||
|
||
今天我们主要通过简单的操作,熟悉了几个必备的进程状态。用我们最熟悉的 ps 或者 top ,可以查看进程的状态,这些状态包括运行(R)、空闲(I)、不可中断睡眠(D)、可中断睡眠(S)、僵尸(Z)以及暂停(T)等。
|
||
|
||
其中,不可中断状态和僵尸状态,是我们今天学习的重点。
|
||
|
||
* 不可中断状态,表示进程正在跟硬件交互,为了保护进程数据和硬件的一致性,系统不允许其他进程或中断打断这个进程。进程长时间处于不可中断状态,通常表示系统有 I/O 性能问题。
|
||
|
||
* 僵尸进程表示进程已经退出,但它的父进程还没有回收子进程占用的资源。短暂的僵尸状态我们通常不必理会,但进程长时间处于僵尸状态,就应该注意了,可能有应用程序没有正常处理子进程的退出。
|
||
|
||
|
||
## 思考
|
||
|
||
最后,我想请你思考一下今天的课后题,案例中发现的这两个问题,你会怎么分析呢?又应该怎么解决呢?你可以结合前面我们做过的案例分析,总结自己的思路,提出自己的问题。
|
||
|
||
欢迎在留言区和我讨论,也欢迎把这篇文章分享给你的同事、朋友。我们一起在实战中演练,在交流中进步。
|
||
|
||
![](https://static001.geekbang.org/resource/image/56/52/565d66d658ad23b2f4997551db153852.jpg)
|
||
|