gitbook/机器学习40讲/docs/15125.md
2022-09-03 22:05:03 +08:00

30 lines
3.6 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# 结课 | 终有一天,你将为今天的付出骄傲
不知不觉间又一个40期的机器学习专栏也走到了尾声。在专栏里我从理解概率的两大流派入手以每种流派中的各个模型为主线对统计机器学习和贝叶斯机器学习做了系统的介绍并从这些模型中梳理出它们之间关系的脉络帮助你尽可能地从更加宏观的角度来理解模型内部的关联。
## 内容:由博返约求精深
和上一季的“人工智能基础课”相比,这一季专栏的内容聚焦于机器学习一点,力求更加深入地挖掘这个主题。增加深度意味着提升难度,无论是写作的我还是阅读的你,都需要投入更多的时间和精力去理解与消化。
理解事物时,我们都习惯从感性认知入手,可要从感性认知进化为理性思辨,你还是不得不和那些恼人的符号和讨厌的公式打交道。然而这是学习的必经之路:直观而具体的认识虽然容易理解,其适用范围却相当有限,要解决现实问题就必须将认识上升到知识的高度,而知识的价值恰恰就蕴含在复杂的公式所体现出的规律之中。
**具有普适性的抽象规律,才具有学习的价值**。在机器学习中,各种各样的模型某种程度而言其实也是简单具体的实例,诸如局部化和集成化之类的方法才是支配模型演变的规律。正是这些规律与统计学习的理论相结合,才让机器学习变得魅力无穷。
## 收获:见贤思齐多自省
工作上的职责所在让我接触了很多关于教学的文献与范例,其中一些国内外教学名家的课程堪称醍醐灌顶。虽然学科有所区别,但这些大师总能深入浅出、化繁为简,将深奥的道理以老妪能懂的形式清晰而准确地解释出来。体验这些大师的授课是种享受,在艰辛的求索中感受到一丝如沐春风的惬意。
罗马不是一天建成的,大师们的举重若轻也是来源于多年积累的深厚功底。博学多闻才能融会贯通,只有将广博的专业知识和精湛的教学技艺相结合,方能达到这样的境界。在我自己的角度看,从这个专栏得到的最大收获便是一份鞭策,它在不断提醒我对自己的提升依然任重而道远。
## 启示:莫道前路多崎岖
最近几年,所谓的“一万小时”理论声名鹊起,甚至被人奉为圭臬。可是在我看来,它无非说明了一个再简单不过的道理:有付出才有收获。究竟练习了一万小时还是两万小时并不是关键,关键在于填满这时间的努力。如果你天赋异禀外加勤于思考,两千个小时可能就足以成为高手;可要是像学弈时净想着射落天鹅的那个小孩一样,怕是十万个小时也是白搭。
**之所以要花费这么多的努力和时间,是因为没有任何学问是简单的**。如果以玩儿票的态度对待新知,那大可不必为此大费思量;可是要深入学习一门学问的话,这样的痛苦就是必经之路,奢求速成的捷径百分之百徒劳无功。
任何一个成熟的学科都是诸多天才前辈智慧的结晶,如果这些天赋异禀之人尚且需要劈波斩浪,平凡的我辈便只有更加努力,才能在浩瀚的学海中求得生存。只有经过一波又一波惊涛骇浪的洗礼,才有资格去欣赏对岸无双的美景。
不经历风雨,怎能见彩虹,没有人能随随便便成功。终有一天,你将为今天的付出骄傲,加油!
[![](https://static001.geekbang.org/resource/image/f6/34/f691d4aa61d15c576d5a2128d6a95134.jpg)](http://geektime.mikecrm.com/yweliWa)