226 lines
17 KiB
Markdown
226 lines
17 KiB
Markdown
# 10|按指定顺序给词语排序,提高查找效率
|
||
|
||
你好,我是尹会生。
|
||
|
||
之前我在游戏行业工作的时候,经常需要取得用户在线时长TOP3、用户战斗力TOP5、用户完成任务数量TOP10等数据,相信你在工作中也会有遇到从大量数据取得TopN这类需求。
|
||
|
||
提取TopN的操作,本质上是对大量数据先进行排序,然后根据排序的结果取出前N个值。而实现提取TopN的值,用Python来实现会非常高效,这节课,我就来讲一讲具体怎么操作。
|
||
|
||
## 使用sorted()函数实现排序
|
||
|
||
在Python中,已经内置了排序函数sorted()函数,它是Python中实现排序最简单且最直接的形式,可以解决80%的排序问题。那么,我们就来学习一下怎么用sorted()函数对常见的数据类型进行排序。
|
||
|
||
先看sorted()函数的定义。
|
||
|
||
```
|
||
sorted(iterable, cmp=None, key=None, reverse=False)
|
||
|
||
```
|
||
|
||
sorted函数共有四个参数,第一个参数是要排序的对象,后面三个参数是排序的方式。
|
||
|
||
如果要为某个对象排序的话,你可以直接将它作为sorted()函数的第一个参数,返回结果会将对象的值进行从小到大的排序。
|
||
|
||
如果sorted()返回的排序结果不满足你的需要,比如你想要从大到小的排序,那你就可以利用后面三个参数来改变排序的方式,实现自定义排序。
|
||
|
||
所以今天这节课,我会带你学习怎么使用sorted()函数实现默认排序和自定义排序,来解决你实际工作中遇到的多种排序问题。我们先来看怎么使用sorted()实现默认排序。
|
||
|
||
### 默认排序
|
||
|
||
**sorted()函数的默认排序是按照从小到大的顺序进行排序的**。例如一家公司即将上市,需要在职的前1000名员工的工号和姓名,工号越小的员工配股越多。这时候就需要给所有员工的工号进行排序,并取得工号排在前1000个员工的名字。具体怎么做呢?
|
||
|
||
我们来看sorted()函数的用法。我们从它的第一个参数开始学习。第一个参数是sorted()函数要排序的对象,我以列表为例,把员工的工号放到列表中,我们来看一下sorted()函数是怎么对列表中的工号进行从小到大的排序的。
|
||
|
||
```
|
||
sorted_list = sorted([30, 50, 20, 10, 40])
|
||
print(sorted_list)
|
||
# [10, 20, 30, 40, 50]
|
||
|
||
```
|
||
|
||
我在代码中给sorted()函数指定了一个列表类型的参数“\[30, 50, 20, 10, 40\]”。按照sorted()函数的定义,这个列表会被sorted()函数按照数字从小到大进行排序,并返回排序后的结果。并且,我把结果放入sorted\_list对象中,你从代码中可以看到sorted\_list已经把数据按照默认从小到大的顺序排列好,并把结果放在一个列表数据类型中。
|
||
|
||
这就是sorted()的基本用法,其实是比较简单的,不过这里**有三点需要你注意。**
|
||
|
||
**首先,sorted()函数的默认排序方式是从小到大进行排序,那么对于列表中的数字就会按照默认的算法进行大小比较。但是除了数字外,列表中还会出现字母或字母与数字混合的方式,你也需要掌握这两种方式的排序处理方法。**
|
||
|
||
比如说英文字母,会按照列表中字符串的第一个字母从A到Z、从a到z进行排序。如果字符串的第一个字母相同,就会比较第二个字母,以此类推,直到比较完字符串中的所有字符。
|
||
|
||
由于默认排序的时候不支持同时对英文字母和数字进行排序,那么如果列表中既包含了字母,又包含了数字,在默认排序时程序就会提示一个异常,那就是无法使用“<”比较整数和字符串。
|
||
|
||
```
|
||
TypeError: '<' not supported between instances of 'int' and 'str'
|
||
|
||
```
|
||
|
||
因此,当列表中出现类似“\["a", 1, "bb"\]”这种,**既包含字符串又包含数字的列表,进行排序操作的时候**,你需要先统一类型,把数字使用str()函数转换为字符串类型,再对列表进行排序。我把代码写出来,供你参考:
|
||
|
||
```
|
||
sorted_list2 = sorted(["a", str(1), "bb"])
|
||
print(sorted_list2)
|
||
|
||
```
|
||
|
||
**其次,你需要注意,sorted()函数不会对原有的列表进行修改,它会把排序好的结果存入到一个新的列表当中。**
|
||
|
||
很多人刚开始使用Python时,会把sorted()函数和列表自带的函数sort()函数混淆。
|
||
|
||
它们虽然名字很像,但支持的数据类型、调用的方式以及返回的结果都不同。
|
||
|
||
要记住,sort()函数是列表数据类型自带的,所以只能对列表数据类型进行排序,不能对其他数据类型排序,但sorted()函数可以支持任何可迭代的对象。
|
||
|
||
在调用方式上,sort()函数使用的方式是“列表.sort()”格式,这也是调用时和sorted()函数的差别。
|
||
|
||
还有一个最大的差别是,sort()函数会直接修改当前列表(这种修改称作“原地修改”),并返回一个空值None。而**sorted()函数不会对原有的列表进行修改,它会把排序好的结果存入到一个新的列表当中**。
|
||
|
||
为了让你更好地区分sorted()函数和sort()函数,我把sort()函数的执行结果也提供给你做参考。
|
||
|
||
```
|
||
list3 = ["a", "c", "bb"]
|
||
no_value = list3.sort()
|
||
print(list3)
|
||
# ['a', 'bb', 'c'] 执行结果
|
||
print(no_value)
|
||
# None 执行结果
|
||
|
||
```
|
||
|
||
在代码的第二行,是sort()函数的调用格式。在第三行,我输出了排序之后的列表,并对列表的值进行了重新排序。在第五行,我们可以看到no\_value变量的返回值为None,也就是sort()函数会对列表进行原地修改,并使用None作为返回。
|
||
|
||
**最后,你需要注意sorted()函数能够支持的数据类型非常多**,既能支持基础数据类型,又能支持Python自带的内置函数。根据它的函数定义,第一个参数是“iterable”对象,表示只要该对象可迭代,sorted()函数就能对它进行排序。
|
||
|
||
在基本数据类型中,**序列和映射都可以迭代****,**序列是指列表、元组、字符串这三种基本数据类型的总称,映射就是我们使用过的字典。除了基本数据类型之外,像是range() 、map()、zip()等内置函数都是可迭代对象,因此掌握sorted()函数,可以对以上多种类型和函数进行排序。
|
||
|
||
掌握了这三点注意事项,在使用sorted()为可迭代类型进行排序时,就不会出现什么问题了。那接下来,我来带你学习一下它的自定义排序功能,通过自定义排序,可以让sorted()基于不同的数据类型实现更加灵活的排序。
|
||
|
||
### 自定义排序
|
||
|
||
自定义排序是在基本排序基础上,能够支持**更多****的****排序方式和更复杂的数据类型。比如说:**
|
||
|
||
* 在排序方式上,我们通过参数,可以把默认的从小到大的排序改为从大到小。
|
||
* 在对数据类型的支持上,像列表中包含元组这种复杂数据类型,可以通过指定元组的任意一列进行排序。
|
||
|
||
我们先学习自定义排序是怎么支持更多的排序方式的,它的前提是要先更改默认的排序方式。
|
||
|
||
例如我想要实现列表的从大到小的排序,并提取Top 3这一需求,我首先需要使用函数的第四个参数reverse参数改变默认的排序方式,排序后我需要使用列表的切片方式提取前三个元素。
|
||
|
||
我先把代码写出来,然后再给你详细解释。可以看到,我在代码中使用了sorted\_list4作为排序后的结果,并对sorted\_list4进行切片,从而得到指定下标对应的值。
|
||
|
||
```
|
||
sorted_list4 = sorted([30, 50, 20, 10, 40], reverse=True)
|
||
print(sorted_list4[:3])
|
||
# [50, 40, 30]
|
||
|
||
```
|
||
|
||
在代码中,我为sorted()函数增加了参数reverse。reverse参数在定义的时候是sorted()函数的第四个参数,由于sorted()函数的第二、三个参数我希望保持默认,不需要在调用的时候传入,因此reverse参数在调用时就要作为第二个参数来使用。
|
||
|
||
由于在调用时它的位置和定义的位置不同,那么我必须使用关键字参数 “reverse=True”的形式,把reverse指定为sorted()函数的第二个参数。
|
||
|
||
增加reverse参数之后,sorted()执行的结果也和默认结果不同,sorted会将默认排序的结果进行反转。而当五个数字的排序结果反转后,也就以从大到小的方式进行了输出。
|
||
|
||
你看,利用sorted()函数的reverse参数就能实现TopN场景的排序工作,工作中往往需要只得到TopN的结果,不需要将全部的排序结果进行输出,这时候你可以将列表按照你的工作需要提取其中的某一部分,这种操作也被称作列**表的切片。**
|
||
|
||
假如你想取得sorted\_list4列表的Top3元素,可以对列表排序后,使用sorted\_list4\[0:3\]的写法提取列表前三个值,这种写法的“0”“3”表示列表的下标,“:”表示获取下标的范围。因为列表的下标从0开始,因此要写作\[0:3\]的形式,也可以使用它的省略形式\[:3\],这样列表切片操作就会从0开始取值。
|
||
|
||
总结来说,通过reverse参数和列表切片,我们可以在默认排序的基础上,实现基于列表的TopN场景下的排序,以及TopN结果的提取。
|
||
|
||
不过现实场景往往都是比较复杂的,要排序的数据类型除了列表中包含数字和字符串外,你最经常见到的还有对列表中包含元组这种复合类型进行排序,以及对字典的键或值进行排序。接下来我来带你学习一下两种主要类型,一种是列表+元祖的类型,一种是字典类型。
|
||
|
||
#### 列表+元组的排序方式
|
||
|
||
列表+元组形成的组合数据类型,适合存放包含多个属性的对象。我给你看个例子,
|
||
|
||
“姓名、性别、身份证号”和“学校、姓名、学号”这两组数据就适合用元组存储。因为元组存储的值是不可变的,而这些数据填入之后一般不会修改,刚好和元组的特性吻合。
|
||
|
||
而且,这些用户信息在工作中往往会被大量存储在一起,为了便于对它们进行排序和查找。你还需要将多个元组再保存到列表当中,这样就形成了列表+元组这种组合类型。
|
||
|
||
对列表+元组的形式进行排序,就需要用自定义排序的字段来实现。那就是在默认排序的基础上,增加key参数,并通过lambda表达式取得元组第三个位置的学号。
|
||
|
||
**lambda表达式是简化自定义函数的定义和调用而使用的一种语法**,使用lambda表达式取得学号的字符串之后,sortd()就可以实现对元组按照学号进行排序了。
|
||
|
||
在这里,key没法通过下标对元组排序,而必须通过函数取得参数具体的值。这是sorted()函数为了更灵活地实现排序功能,把设置排序关键字这一功能全部开放给用户造成的。事实上,这也是一种典型的通过牺牲易用性来增加灵活性的设计模式。
|
||
|
||
这一知识点比较难理解,不过不用担心,我在后续课程陆续为你讲解这类函数,直到你能熟练使用它们为止。
|
||
|
||
到这里,我们就了解了sorted()函数的key参数必须使用函数做参数的原因,那就继续来看**key参数的lambda表达式是****怎么****简化自定义函数的**。
|
||
|
||
比如我想取得元组中包含“Jerry”的学号“1003”,以及包含“Tom”的元组学号的“1005”,可以使用这样一段代码来实现函数定义和调用方式:
|
||
|
||
```
|
||
def s(my_tuple):
|
||
return my_tuple[2]
|
||
sorted(students, key=s)
|
||
|
||
sorted(students, key=lambda s: s[2])
|
||
|
||
```
|
||
|
||
在代码的1-3行、第5行,分别是通过自定义函数和lambda表达式实现的提取元组第三个参数的功能。对比来看,自定义函数的定义要比lambda表达式复杂。自定义函数的定义和调用部分在Python中要分开编写,这也是简单函数更适合用lambda表达式编写的原因。
|
||
|
||
lambda表达式通常在函数只有一行语句,且不需要强调函数名称的时候使用,因此它还有一个名字叫做**匿名函数。**它的结构只包含四部分,即**lambda关键字、需要接收的参数、一个冒号****和****对接收参数的处理**,并且它会把处理结果自动返回。
|
||
|
||
因此在sorted()函数中通过lambda表达式实现按关键字排序,会比使用自定义函数排序更加简洁,所以当你遇到只有一行语句的函数场景时,可以考虑使用lambda表达式替代自定义函数的定义和调用。
|
||
|
||
#### 字典类型的排序方式
|
||
|
||
除了列表+元组的复合类型外,我们经常还需要对字典类型进行排序,**字典类型包含键和值**,****所以排序的时候可以基于键来排序****,**也可以基于值来排序**。
|
||
|
||
我们还是以学生信息为例。我把学生的姓名定义为字典的键,把学号定义为字典的值。接下来我们看看sorted()是怎么对字典的键和值进行排序的,实现排序的代码如下:
|
||
|
||
```
|
||
student_dict1 = {'Jerry':'1003',
|
||
'Tom':'1005',
|
||
'Beta':'2001',
|
||
'Shuke':'2003'
|
||
}
|
||
|
||
# 输出字典的键和值
|
||
print(student_dict1.items())
|
||
# dict_items([('Jerry', '1003'), ('Tom', '1005'), ('Beta', '2001'), ('Shuke', '2003')])
|
||
|
||
# 按照字典的键排序
|
||
print(sorted(student_dict1.items(), key=lambda d: d[0]))
|
||
# [('Beta', '2001'), ('Jerry', '1003'), ('Shuke', '2003'), ('Tom', '1005')]
|
||
|
||
# 按照字典的值排序
|
||
result = sorted(student_dict1.items(), key=lambda d: d[1])
|
||
print(result)
|
||
[('Jerry', '1003'), ('Tom', '1005'), ('Beta', '2001'), ('Shuke', '2003')]
|
||
# 将结果转换为字典
|
||
print(dict(result))
|
||
# {'Jerry': '1003', 'Tom': '1005', 'Beta': '2001', 'Shuke': '2003'}
|
||
|
||
```
|
||
|
||
在这段代码中,我实现了基于字典的键和字典的值进行排序的功能。由于字典是使用键值对的形式存储数据的,所以我先通过字典自带的函数items(),把键值对的形式转换成列表+元组的形式。经过转换以后,字典的键就变成了元组的第一个参数,值就变成了元组的第二个参数。
|
||
|
||
因此在代码中,我把参数key的值设置为“lambda d: d\[0\]”,这样就取得了元组的第一个元素,排序之后就实现了按照字典的键进行排序的需求。相应的,使用“lambda d: d\[1\]”,可以取得元组第二个元素的值,就能实现按照字典的值进行排序的需求。
|
||
|
||
由于排序后的数据类型已经变成了列表+元组形式。所以我们在代码最后,可以通过dict()函数把排序的结果再转换为字典,和排序前的数据类型保持一致。
|
||
|
||
这就是通过sorted()函数对字典进行排序的解决方法,你在工作中或许还会遇到和这节课不一样的数据类型,但是它们的解决思路是相通的。
|
||
|
||
1. 如果能转换成列表,可以采用更改lambda下标的方式,实现对指定字段的排序。
|
||
2. 如果不能转换成列表,可以尝试将复杂的类型中,不需要进行排序的部分进行删减,简化成列表或字典类型,这样就也能使用sorted实现数据的排序功能了。
|
||
|
||
## 小结
|
||
|
||
最后,我来给你总结一下这节课的核心内容。我们通过sorted()函数实现了列表、列表+元组、字典类型的排序,通过排序后的结果,你可以快速提取TopN,也可以利用你学习过的其他语言的算法实现更复杂的查找。
|
||
|
||
在sorted()函数中,我们通过编写key参数的值,使用了lambda表达式替代了简单的函数,让我们的程序更加简洁。当你在日后的工作场景中也出现了只有单个语句的函数时,也可以考虑采用lambda表达式替代自定义函数,增加代码的可读性。
|
||
|
||
正是因为sorted()功能的强大,我们在python中实现排序几乎不需要通过自行编写代码来实现排序,不过你在进行海量数据的时候,我还想给你提供两条有用的建议。
|
||
|
||
第一,如果对包含海量数据的列表进行排序时,建议将列表通过tuple()函数转换为元组,能够让查找效率有较大提升。
|
||
|
||
第二,在Python标准库collections库中提供了OrderedDict扩展数据类型,它的特点是对OrderedDict数据类型进行赋值时,会自动进行排序。当你需要一个有序字典时,可以考虑选择OrderedDict作为数据存储的类型,从而避免手工对数据排序。
|
||
|
||
我也把这节课的相关代码放在了[GitHub](https://github.com/wilsonyin123/python_productivity/blob/main/%E6%96%87%E7%AB%A010%E4%BB%A3%E7%A0%81.zip)上,你可以去学习查找。
|
||
|
||
## 思考题
|
||
|
||
在最后,我想给你留一道开放性的问题。为什么Python语言不将所有的数据类型都设计成默认有序的,即存入数据时自动进行排序?欢迎你说出自己的理由。
|
||
|
||
欢迎把你对问题的思考和想法分享在留言区,我们一起交流讨论。如果课程帮你解决了一些工作上的问题,也欢迎你把课程分享给你的朋友、同事。
|
||
|