You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

298 lines
15 KiB
Markdown

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# 18 | 案例篇:内存泄漏了,我该如何定位和处理?
你好,我是倪朋飞。
通过前几节对内存基础的学习,我相信你对 Linux 内存的工作原理,已经有了初步了解。
对普通进程来说,能看到的其实是内核提供的虚拟内存,这些虚拟内存还需要通过页表,由系统映射为物理内存。
当进程通过 malloc() 申请虚拟内存后,系统并不会立即为其分配物理内存,而是在首次访问时,才通过缺页异常陷入内核中分配内存。
为了协调 CPU 与磁盘间的性能差异Linux 还会使用 Cache 和 Buffer ,分别把文件和磁盘读写的数据缓存到内存中。
对应用程序来说,动态内存的分配和回收,是既核心又复杂的一个逻辑功能模块。管理内存的过程中,也很容易发生各种各样的“事故”,比如,
* 没正确回收分配后的内存,导致了泄漏。
* 访问的是已分配内存边界外的地址,导致程序异常退出,等等。
今天我就带你来看看,内存泄漏到底是怎么发生的,以及发生内存泄漏之后该如何排查和定位。
说起内存泄漏,这就要先从内存的分配和回收说起了。
## 内存的分配和回收
先回顾一下,你还记得应用程序中,都有哪些方法来分配内存吗?用完后,又该怎么释放还给系统呢?
前面讲进程的内存空间时,我曾经提到过,用户空间内存包括多个不同的内存段,比如只读段、数据段、堆、栈以及文件映射段等。这些内存段正是应用程序使用内存的基本方式。
举个例子,你在程序中定义了一个局部变量,比如一个整数数组 _int data\[64\]_ ,就定义了一个可以存储 64 个整数的内存段。由于这是一个局部变量,它会从内存空间的栈中分配内存。
栈内存由系统自动分配和管理。一旦程序运行超出了这个局部变量的作用域,栈内存就会被系统自动回收,所以不会产生内存泄漏的问题。
再比如,很多时候,我们事先并不知道数据大小,所以你就要用到标准库函数 _malloc()_ \_\_在程序中动态分配内存。这时候系统就会从内存空间的堆中分配内存。
堆内存由应用程序自己来分配和管理。除非程序退出,这些堆内存并不会被系统自动释放,而是需要应用程序明确调用库函数 _free()_ 来释放它们。如果应用程序没有正确释放堆内存,就会造成内存泄漏。
这是两个栈和堆的例子,那么,其他内存段是否也会导致内存泄漏呢?经过我们前面的学习,这个问题并不难回答。
* 只读段,包括程序的代码和常量,由于是只读的,不会再去分配新的内存,所以也不会产生内存泄漏。
* 数据段,包括全局变量和静态变量,这些变量在定义时就已经确定了大小,所以也不会产生内存泄漏。
* 最后一个内存映射段,包括动态链接库和共享内存,其中共享内存由程序动态分配和管理。所以,如果程序在分配后忘了回收,就会导致跟堆内存类似的泄漏问题。
**内存泄漏的危害非常大,这些忘记释放的内存,不仅应用程序自己不能访问,系统也不能把它们再次分配给其他应用**。内存泄漏不断累积,甚至会耗尽系统内存。
虽然,系统最终可以通过 OOM Out of Memory机制杀死进程但进程在 OOM 前,可能已经引发了一连串的反应,导致严重的性能问题。
比如,其他需要内存的进程,可能无法分配新的内存;内存不足,又会触发系统的缓存回收以及 SWAP 机制,从而进一步导致 I/O 的性能问题等等。
内存泄漏的危害这么大,那我们应该怎么检测这种问题呢?特别是,如果你已经发现了内存泄漏,该如何定位和处理呢。
接下来,我们就用一个计算斐波那契数列的案例,来看看内存泄漏问题的定位和处理方法。
斐波那契数列是一个这样的数列0、1、1、2、3、5、8…也就是除了前两个数是0和1其他数都由前面两数相加得到用数学公式来表示就是 F(n)=F(n-1)+F(n-2)n>=2F(0)=0, F(1)=1。
## 案例
今天的案例基于 Ubuntu 18.04,当然,同样适用其他的 Linux 系统。
* 机器配置2 CPU8GB 内存
* 预先安装 sysstat、Docker 以及 bcc 软件包,比如:
```
# install sysstat docker
sudo apt-get install -y sysstat docker.io
# Install bcc
sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 4052245BD4284CDD
echo "deb https://repo.iovisor.org/apt/bionic bionic main" | sudo tee /etc/apt/sources.list.d/iovisor.list
sudo apt-get update
sudo apt-get install -y bcc-tools libbcc-examples linux-headers-$(uname -r)
```
其中sysstat 和 Docker 我们已经很熟悉了。sysstat 软件包中的 vmstat ,可以观察内存的变化情况;而 Docker 可以运行案例程序。
[bcc](https://github.com/iovisor/bcc) 软件包前面也介绍过,它提供了一系列的 Linux 性能分析工具,常用来动态追踪进程和内核的行为。更多工作原理你先不用深究,后面学习我们会逐步接触。这里你只需要记住,按照上面步骤安装完后,它提供的所有工具都位于 /usr/share/bcc/tools 这个目录中。
> 注意bcc-tools需要内核版本为4.1或者更高如果你使用的是CentOS7或者其他内核版本比较旧的系统那么你需要手动[升级内核版本后再安装](https://github.com/iovisor/bcc/issues/462)。
打开一个终端SSH 登录到机器上,安装上述工具。
同以前的案例一样,下面的所有命令都默认以 root 用户运行,如果你是用普通用户身份登陆系统,请运行 sudo su root 命令切换到 root 用户。
如果安装过程中有什么问题,同样鼓励你先自己搜索解决,解决不了的,可以在留言区向我提问。如果你以前已经安装过了,就可以忽略这一点了。
安装完成后,再执行下面的命令来运行案例:
```
$ docker run --name=app -itd feisky/app:mem-leak
```
案例成功运行后,你需要输入下面的命令,确认案例应用已经正常启动。如果一切正常,你应该可以看到下面这个界面:
```
$ docker logs app
2th => 1
3th => 2
4th => 3
5th => 5
6th => 8
7th => 13
```
从输出中,我们可以发现,这个案例会输出斐波那契数列的一系列数值。实际上,这些数值每隔 1 秒输出一次。
知道了这些,我们应该怎么检查内存情况,判断有没有泄漏发生呢?你首先想到的可能是 top 工具不过top 虽然能观察系统和进程的内存占用情况,但今天的案例并不适合。内存泄漏问题,我们更应该关注内存使用的变化趋势。
所以,开头我也提到了,今天推荐的是另一个老熟人, vmstat 工具。
运行下面的 vmstat ,等待一段时间,观察内存的变化情况。如果忘了 vmstat 里各指标的含义,记得复习前面内容,或者执行 man vmstat 查询。
```
# 每隔3秒输出一组数据
$ vmstat 3
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
0 0 0 6601824 97620 1098784 0 0 0 0 62 322 0 0 100 0 0
0 0 0 6601700 97620 1098788 0 0 0 0 57 251 0 0 100 0 0
0 0 0 6601320 97620 1098788 0 0 0 3 52 306 0 0 100 0 0
0 0 0 6601452 97628 1098788 0 0 0 27 63 326 0 0 100 0 0
2 0 0 6601328 97628 1098788 0 0 0 44 52 299 0 0 100 0 0
0 0 0 6601080 97628 1098792 0 0 0 0 56 285 0 0 100 0 0
```
从输出中你可以看到,内存的 free 列在不停的变化,并且是下降趋势;而 buffer 和 cache 基本保持不变。
未使用内存在逐渐减小,而 buffer 和 cache 基本不变,这说明,系统中使用的内存一直在升高。但这并不能说明有内存泄漏,因为应用程序运行中需要的内存也可能会增大。比如说,程序中如果用了一个动态增长的数组来缓存计算结果,占用内存自然会增长。
那怎么确定是不是内存泄漏呢?或者换句话说,有没有简单方法找出让内存增长的进程,并定位增长内存用在哪儿呢?
根据前面内容,你应该想到了用 top 或ps 来观察进程的内存使用情况,然后找出内存使用一直增长的进程,最后再通过 pmap 查看进程的内存分布。
但这种方法并不太好用,因为要判断内存的变化情况,还需要你写一个脚本,来处理 top 或者 ps 的输出。
这里我介绍一个专门用来检测内存泄漏的工具memleak。memleak 可以跟踪系统或指定进程的内存分配、释放请求然后定期输出一个未释放内存和相应调用栈的汇总情况默认5 秒)。
当然memleak 是 bcc 软件包中的一个工具,我们一开始就装好了,执行 _/usr/share/bcc/tools/memleak_ 就可以运行它。比如,我们运行下面的命令:
```
# -a 表示显示每个内存分配请求的大小以及地址
# -p 指定案例应用的PID号
$ /usr/share/bcc/tools/memleak -a -p $(pidof app)
WARNING: Couldn't find .text section in /app
WARNING: BCC can't handle sym look ups for /app
addr = 7f8f704732b0 size = 8192
addr = 7f8f704772d0 size = 8192
addr = 7f8f704712a0 size = 8192
addr = 7f8f704752c0 size = 8192
32768 bytes in 4 allocations from stack
[unknown] [app]
[unknown] [app]
start_thread+0xdb [libpthread-2.27.so]
```
从 memleak 的输出可以看到,案例应用在不停地分配内存,并且这些分配的地址没有被回收。
这里有一个问题Couldnt find .text section in /app所以调用栈不能正常输出最后的调用栈部分只能看到 \[unknown\] 的标志。
为什么会有这个错误呢实际上这是由于案例应用运行在容器中导致的。memleak 工具运行在容器之外,并不能直接访问进程路径 /app。
比方说,在终端中直接运行 ls 命令,你会发现,这个路径的确不存在:
```
$ ls /app
ls: cannot access '/app': No such file or directory
```
类似的问题,我在 CPU 模块中的 [perf 使用方法](https://time.geekbang.org/column/article/73738)中已经提到好几个解决思路。最简单的方法,就是在容器外部构建相同路径的文件以及依赖库。这个案例只有一个二进制文件,所以只要把案例应用的二进制文件放到 /app 路径中,就可以修复这个问题。
比如,你可以运行下面的命令,把 app 二进制文件从容器中复制出来,然后重新运行 memleak 工具:
```
$ docker cp app:/app /app
$ /usr/share/bcc/tools/memleak -p $(pidof app) -a
Attaching to pid 12512, Ctrl+C to quit.
[03:00:41] Top 10 stacks with outstanding allocations:
addr = 7f8f70863220 size = 8192
addr = 7f8f70861210 size = 8192
addr = 7f8f7085b1e0 size = 8192
addr = 7f8f7085f200 size = 8192
addr = 7f8f7085d1f0 size = 8192
40960 bytes in 5 allocations from stack
fibonacci+0x1f [app]
child+0x4f [app]
start_thread+0xdb [libpthread-2.27.so]
```
这一次,我们终于看到了内存分配的调用栈,原来是 fibonacci() 函数分配的内存没释放。
定位了内存泄漏的来源,下一步自然就应该查看源码,想办法修复它。我们一起来看案例应用的源代码 [app.c](https://github.com/feiskyer/linux-perf-examples/blob/master/mem-leak/app.c)
```
$ docker exec app cat /app.c
...
long long *fibonacci(long long *n0, long long *n1)
{
//分配1024个长整数空间方便观测内存的变化情况
long long *v = (long long *) calloc(1024, sizeof(long long));
*v = *n0 + *n1;
return v;
}
void *child(void *arg)
{
long long n0 = 0;
long long n1 = 1;
long long *v = NULL;
for (int n = 2; n > 0; n++) {
v = fibonacci(&n0, &n1);
n0 = n1;
n1 = *v;
printf("%dth => %lld\n", n, *v);
sleep(1);
}
}
...
```
你会发现, child() 调用了 fibonacci() 函数,但并没有释放 fibonacci() 返回的内存。所以,想要修复泄漏问题,在 child() 中加一个释放函数就可以了,比如:
```
void *child(void *arg)
{
...
for (int n = 2; n > 0; n++) {
v = fibonacci(&n0, &n1);
n0 = n1;
n1 = *v;
printf("%dth => %lld\n", n, *v);
free(v); // 释放内存
sleep(1);
}
}
```
我把修复后的代码放到了 [app-fix.c](https://github.com/feiskyer/linux-perf-examples/blob/master/mem-leak/app-fix.c),也打包成了一个 Docker 镜像。你可以运行下面的命令,验证一下内存泄漏是否修复:
```
# 清理原来的案例应用
$ docker rm -f app
# 运行修复后的应用
$ docker run --name=app -itd feisky/app:mem-leak-fix
# 重新执行 memleak工具检查内存泄漏情况
$ /usr/share/bcc/tools/memleak -a -p $(pidof app)
Attaching to pid 18808, Ctrl+C to quit.
[10:23:18] Top 10 stacks with outstanding allocations:
[10:23:23] Top 10 stacks with outstanding allocations:
```
现在,我们看到,案例应用已经没有遗留内存,证明我们的修复工作成功完成。
## 小结
总结一下今天的内容。
应用程序可以访问的用户内存空间,由只读段、数据段、堆、栈以及文件映射段等组成。其中,堆内存和文件映射段,需要应用程序来动态管理内存段,所以我们必须小心处理。不仅要会用标准库函数 _malloc()_ 来动态分配内存,还要记得在用完内存后,调用库函数 _free()_ 来释放它们。
今天的案例比较简单,只用加一个 _free()_ 调用就能修复内存泄漏。不过,实际应用程序就复杂多了。比如说,
* malloc() 和 free() 通常并不是成对出现,而是需要你,在每个异常处理路径和成功路径上都释放内存 。
* 在多线程程序中,一个线程中分配的内存,可能会在另一个线程中访问和释放。
* 更复杂的是,在第三方的库函数中,隐式分配的内存可能需要应用程序显式释放。
所以,为了避免内存泄漏,最重要的一点就是养成良好的编程习惯,比如分配内存后,一定要先写好内存释放的代码,再去开发其他逻辑。还是那句话,有借有还,才能高效运转,再借不难。
当然,如果已经完成了开发任务,你还可以用 memleak 工具,检查应用程序的运行中,内存是否泄漏。如果发现了内存泄漏情况,再根据 memleak 输出的应用程序调用栈,定位内存的分配位置,从而释放不再访问的内存。
## 思考
最后,给你留一个思考题。
今天的案例,我们通过增加 _free()_ 调用,释放函数 _fibonacci()_ 分配的内存,修复了内存泄漏的问题。就这个案例而言,还有没有其他更好的修复方法呢?结合前面学习和你自己的工作经验,相信你一定能有更多更好的方案。
欢迎留言和我讨论 ,写下你的答案和收获,也欢迎你把这篇文章分享给你的同事、朋友。我们一起在实战中演练,在交流中进步。