gitbook/程序员的数学基础课/docs/77474.md
2022-09-03 22:05:03 +08:00

202 lines
15 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# 14 | 树的广度优先搜索(下):为什么双向广度优先搜索的效率更高?
你好,我是黄申。
上一讲,我们通过社交好友的关系,介绍了为什么需要广度优先策略,以及如何通过队列来实现它。有了广度优先搜索,我们就可以知道某个用户的一度、二度、三度等好友是谁。不过,在社交网络中,还有一个经常碰到的问题,那就是给定两个用户,如何确定他们之间的关系有多紧密?
最直接的方法是,使用这两人是几度好友,来衡量他们关系的紧密程度。今天,我就这个问题,来聊聊广度优先策略的一种扩展:双向广度优先搜索,以及这种策略在工程中的应用。
## 如何更高效地求出两个用户间的最短路径?
基本的做法是,从其中一个人出发,进行广度优先搜索,看看另一个人是否在其中。如果不幸的话,两个人相距六度,那么即使是广度优先搜索,同样要达到万亿级的数量。
那究竟该如何更高效地求得两个用户的最短路径呢?我们先看看,影响效率的问题在哪里?很显然,随着社会关系的度数增加,好友数量是呈指数级增长的。所以,如果我们可以控制这种指数级的增长,那么就可以控制潜在好友的数量,达到提升效率的目的。
如何控制这种增长呢?我这里介绍一种“**双向广度优先搜索**”。它巧妙地运用了两个方向的广度优先搜索,大幅降低了搜索的度数。现在我就带你看下,这个方法的核心思想。
假设有两个人$a$、$b$。
* 我们首先从$a$出发,进行广度优先搜索,记录$a$的所有一度好友$a\_{1}$,然后看点$b$是否出现在集合$a\_{1}$中。
* 如果没有,就再从$b$出发,进行广度优先搜索,记录所有一度好友$b\_{1}$,然后看$a$和$a\_{1}$是否出现在$b$和$b\_{1}$的并集中。
* 如果没有,就回到$a$,继续从它出发的广度优先搜索,记录所有二度好友$a\_{2}$,然后看$b$和$b\_{1}$是否出现在$a$、$a\_{1}$和$a\_{2}$三者的并集中。
* 如果没有,就回到$b$,继续从它出发的广度优先搜索。
* 如此轮流下去,直到找到$a$的好友和$b$的好友的交集。
如果有交集,就表明这个交集里的点到$a$和$b$都是通路。
我们假设$c$在这个交集中,那么把$a$到$c$的通路长度和$b$到$c$的通路长度相加,得到的就是从$a$到$b$的最短通路长(这个命题可以用反证法证明),也就是两者为几度好友。这个过程有点复杂,我画了一张图帮助你来理解。
![](https://static001.geekbang.org/resource/image/b6/0e/b665fdbd81e7d0fb3245fbcd3b21230e.jpg?wh=1142*856)
思路你应该都清楚了,现在我们来看看如何用代码来实现。
要想实现双向广度优先搜索首先我们要把结点类Node稍作修改增加一个变量degrees。这个变量是HashMap类型用于存放从不同用户出发到当前用户是第几度结点。比如说当前结点是4从结点1到结点4是3度结点2到结点4是2度结点3到结点4是4度那么结点4的degrees变量存放的就是如下映射
![](https://static001.geekbang.org/resource/image/e2/47/e27d792a83dbe325ad5d0432910ffb47.png?wh=962*302)
有了变量degrees我们就能随时知道某个点和两个出发点各自相距多少。所以在发现交集之后根据交集中的点和两个出发点各自相距多少就能很快地算出最短通路的长度。理解了这点之后我们在原有的Node结点内增加degrees变量的定义和初始化。
```
public class Node {
......
public HashMap<Integer, Integer> degrees; // 存放从不同用户出发,当前用户结点是第几度
// 初始化结点
public Node(int id) {
......
degrees = new HashMap<>();
degrees.put(id, 0);
}
}
```
为了让双向广度优先搜索的代码可读性更好我们可以先实现两个模块化的函数getNextDegreeFriend和hasOverlap。函数getNextDegreeFriend是根据给定的队列查找和起始点相距度数为指定值的所有好友。而函数hasOverlap用来判断两个集合是不是有交集。有了这些模块化的函数双向广度优先搜索的代码就更直观了。
在函数一开始,我们先进行边界条件判断。
```
/**
* @Description: 通过双向广度优先搜索,查找两人之间最短通路的长度
* @param user_nodes-用户的结点user_id_a-用户a的IDuser_id_b-用户b的ID
* @return void
*/
public static int bi_bfs(Node[] user_nodes, int user_id_a, int user_id_b) {
if (user_id_a > user_nodes.length || user_id_b > user_nodes.length) return -1; // 防止数组越界的异常
if (user_id_a == user_id_b) return 0; // 两个用户是同一人直接返回0
```
由于同时从两个用户的结点出发对于所有有两条搜索的路径我们都需要初始化两个用于广度优先搜索的队列以及两个用于存放已经被访问结点的HashSet。
```
Queue<Integer> queue_a = new LinkedList<Integer>(); // 队列a用于从用户a出发的广度优先搜索
Queue<Integer> queue_b = new LinkedList<Integer>(); // 队列b用于从用户b出发的广度优先搜索
queue_a.offer(user_id_a); // 放入初始结点
HashSet<Integer> visited_a = new HashSet<>(); // 存放已经被访问过的结点,防止回路
visited_a.add(user_id_a);
queue_b.offer(user_id_b); // 放入初始结点
HashSet<Integer> visited_b = new HashSet<>(); // 存放已经被访问过的结点,防止回路
visited_b.add(user_id_b);
```
接下来要做的是,从两个结点出发,沿着各自的方向,每次广度优先搜索一度,并查找是不是存在重叠的好友。
```
int degree_a = 0, degree_b = 0, max_degree = 20; // max_degree的设置防止两者之间不存在通路的情况
while ((degree_a + degree_b) < max_degree) {
degree_a ++;
getNextDegreeFriend(user_id_a, user_nodes, queue_a, visited_a, degree_a);
// 沿着a出发的方向继续广度优先搜索degree + 1的好友
if (hasOverlap(visited_a, visited_b)) return (degree_a + degree_b);
// 判断到目前为止被发现的a的好友和被发现的b的好友两个集合是否存在交集
degree_b ++;
getNextDegreeFriend(user_id_b, user_nodes, queue_b, visited_b, degree_b);
// 沿着b出发的方向继续广度优先搜索degree + 1的好友
if (hasOverlap(visited_a, visited_b)) return (degree_a + degree_b);
// 判断到目前为止被发现的a的好友和被发现的b的好友两个集合是否存在交集
}
return -1;
// 广度优先搜索超过max_degree之后仍然没有发现a和b的重叠认为没有通路
}
```
你可以同时实现单向广度优先搜索和双向广度优先搜索然后通过实验来比较两者的执行时间看看哪个更短。如果实验的数据量足够大比如说结点在1万以上边在5万以上你应该能发现**双向的方法对时间和内存的消耗都更少**。
为什么双向搜索的效率更高呢我以平均好友度数为4给你举例讲解。
左边的图表示从结点$a$单向搜索走2步右边的图表示分别从结点$a$和$b$双向搜索各走1步。很明显左边的结点有16个明显多于右边的8个结点。而且随着每人认识的好友数、搜索路径的增加这种差距会更加明显。
![](https://static001.geekbang.org/resource/image/15/5b/1518aaa073b379b20ba3dca8dde08d5b.jpg?wh=1142*741)
我们假设每个地球人平均认识100个人如果两个人相距六度单向广度优先搜索要遍历100^6=1万亿左右的人。如果是双向广度优先搜索那么两边各自搜索的人只有100^3=100万。
当然,你可能会说,单向广度优先搜索之后查找匹配用户的开销更小啊。的确如此,假设我们要知道结点$a$和$b$之间的最短路径,单向搜索意味着要在$a$的1万亿个好友中查找$b$。如果采用双向搜索的策略,从结点$a$和$b$出发进行广度优先搜索每个方向会产生100万的好友那么需要比较这两组100万的好友是否有交集。
假设我们使用哈希表来存储$a$的1万亿个好友并把搜索$b$是否存在其中的耗时记作x而把判断两组100万好友是否有交集的耗时记为y那么通常x<y
不过综合考虑广度优先搜索出来的好友数量双向广度优先搜索还是更有效为什么这么说呢稍后介绍算法复杂度的概念和衡量方法时我会具体来分析这个例子
广度优先搜索的应用场景有很多下面我来说说这种策略的一个应用
## 如何实现更有效地嵌套型聚合?
广度优先策略可以帮助我们大幅优化数据分析中的聚合操作聚合是数据分析中一个很常见的操作它会根据一定的条件把记录聚集成不同的分组以便我们统计每个分组里的信息目前SQL语言中的GROUP BY语句Python和Spark语言中data frame的groupby函数Solr的facet查询和ElasticSearch的aggregation查询都可以实现聚合的功能
我们可以嵌套使用不同的聚合获得层级型的统计结果但是实际上针对一个规模超大的数据集聚合的嵌套可能会导致性能严重下降这里我来谈谈如何利用广度优先的策略对这个问题进行优化
首先我用一个具体的例子来给你讲讲什么是多级嵌套的聚合以及为什么它会产生严重的性能问题
这里我列举了一个数据表它描述了一个社交网络中每个人的职业经历字段包括项目的ID用户ID公司ID和同事的IDs
![](https://static001.geekbang.org/resource/image/82/02/8216d39c6bdc3925e5ea139071a41202.png?wh=1548*790)
对于这张表我们可以进行三层嵌套的聚集第一级是根据用户ID来聚获取每位用户一共参与了多少项目第二级是根据公司ID来聚获取每位用户在每家公司参与了多少项目第三级根据同事ID来聚获取每位用户在每家公司和每位同事共同参与了多少项目最终结果应该是类似下面这样的
```
用户u88总共50个项目包括在公司c42中的10个c26中的8个...
在公司c42中参与10个项目包括和u120共事的4个和u99共事的3个...
和u120共同参与4个项目
和u99共同参与3个项目
和u72共同参与3个项目
在公司c26中参与了8个项目
和u145共同参与5个项目
和u128共同参与3个项目
用户u88在其他公司的项目...
用户u66总共47个项目
在公司c28中参与了16个项目
和u65共同参与了5个项目
(用户u66的剩余数据...
...
(其他用户的数据...
```
为了实现这种嵌套式的聚合统计你会怎么来设计呢看起来挺复杂的其实我们可以用最简单的排列的思想分别为每个用户”“每个用户+每个公司”“每个用户+每个公司+每位同事”,生成很多很多的计数器可是如果用户的数量非常大那么这个很多就会成为一个可怕的数字
我们假设这个社交网有5万用户每位用户平均在5家公司工作过而用户在每家公司平均有10名共事的同事那么针对用户的计数器有5万个针对每个用户+每个公司的计数器有25万个而到了每个用户+每个公司+每位同事的计数器就已经达到250万个了三个层级总共需要280万计数器
![](https://static001.geekbang.org/resource/image/61/d8/61dc9b211bf5f7e4f33bf24b1dba9cd8.jpg?wh=1142*650)
我们假设一个计数器是4个字节那么280万个计数器就需要消耗超过10M的内存对于高并发低延迟的实时性服务如果每个请求都要消耗10M内存很容易就导致服务器崩溃另外实时性的服务往往只需要前若干个结果就足以满足需求了在这种情况下完全基于排列的设计就有优化的空间了
从刚才那张图中其实我们就能想到一些优化的思路
对于只需要返回前若干结果的应用场景我们可以对图中的树状结构进行剪枝去掉绝大部分不需要的结点和边这样就能节省大量的内存和CPU计算
比如如果我们只需要返回前100个参与项目最多的用户那么就没有必要按照深度优先的策略去扩展树中高度为2和3的结点了而是应该使用广度优先策略首先找出所有高度为1的结点根据项目数量进行排序然后只取出前100个把计数器的数量从5万个一下子降到100个
以此类推我们还可以控制高度为2和3的结点之数量如果我们只要看前100位用户每位用户只看排名第一的公司而每家公司只看合作最多的3名同事那么最终计数器数量就只有50000+100x5+100x1x10=51500。只有文字还是不太好懂我画了一张图帮你理解这个过程。
![](https://static001.geekbang.org/resource/image/81/d6/8183dff98d2f84b053ca103cb26566d6.jpg?wh=1142*856)![](https://static001.geekbang.org/resource/image/86/25/86e89d1df417e7e1d364e1416855b625.jpg?wh=1142*514)
如果一个项目用到排列组合的思想我们需要在程序里使用大量的变量来保存数据或者进行计算这会导致内存和CPU使用量的急剧增加在允许的情况下我们可以考虑使用广度优先策略对排列组合所生成的树进行优化这样我们就可以有效地缩减树中靠近根的结点数量避免之后树的爆炸性生长
## 小结
广度优先搜索相对于深度优先搜索没有函数的嵌套调用和回溯操作所以运行速度比较快但是随着搜索过程的进行广度优先需要在队列中存放新遇到的所有结点因此占用的存储空间通常比深度优先搜索多
相比之下深度优先搜索法只保留用于回溯的结点而扩展完的结点会从栈中弹出并被删除所以深度优先搜索占用空间相对较少不过深度优先搜索的速度比较慢而并不适合查找结点之间的最短路径这类的应用
![](https://static001.geekbang.org/resource/image/d7/64/d735ed146cac3ca1f81df5acbe634664.jpg?wh=1242*1441)
## 思考题
今天所说的双向广度优先比单向广度优先更高效其实是要基于一个前提条件的你能否说出在什么情况下单向广度优先更高效呢针对这种情况又该如何优化双向广度优先呢
欢迎在留言区交作业并写下你今天的学习笔记你可以点击请朋友读”,把今天的内容分享给你的好友和他一起精进