gitbook/浏览器工作原理与实践/docs/131233.md

207 lines
16 KiB
Markdown
Raw Permalink Normal View History

2022-09-03 22:05:03 +08:00
# 13 | 垃圾回收:垃圾数据是如何自动回收的?
在[上一篇文章](https://time.geekbang.org/column/article/129596)中我们提到了JavaScript中的数据是如何存储的并通过例子分析了**原始数据类型是存储在栈空间中的,引用类型的数据是存储在堆空间中的**。通过这种分配方式,我们解决了数据的内存分配的问题。
不过有些数据被使用之后,可能就不再需要了,我们把这种数据称为**垃圾数据**。如果这些垃圾数据一直保存在内存中,那么内存会越用越多,所以我们需要**对这些垃圾数据进行回收,以释放有限的内存空间**。
## 不同语言的垃圾回收策略
通常情况下,垃圾数据回收分为**手动回收**和**自动回收**两种策略。
如C/C++就是使用手动回收策略,**何时分配内存、何时销毁内存都是由代码控制的**你可以参考下面这段C代码
```
//在堆中分配内存
char* p = (char*)malloc(2048); //在堆空间中分配2048字节的空间并将分配后的引用地址保存到p中
//使用p指向的内存
{
//....
}
//使用结束后,销毁这段内存
free(p)
p = NULL
```
从上面这段C代码可以看出来要使用堆中的一块空间我们需要先调用mallco函数分配内存然后再使用当不再需要这块数据的时候就要手动调用free函数来释放内存。如果这段数据已经不再需要了但是又没有主动调用free函数来销毁那么这种情况就被称为**内存泄漏**。
另外一种使用的是自动垃圾回收的策略如JavaScript、Java、Python等语言**产生的垃圾数据是由垃圾回收器来释放的**,并不需要手动通过代码来释放。
对于JavaScript而言也正是这个“自动”释放资源的特性带来了很多困惑也让一些JavaScript开发者误以为可以不关心内存管理这是一个很大的误解。
那么在本文我们将围绕“JavaScript的数据是如何回收的”这个话题来展开探讨。因为数据是存储在栈和堆两种内存空间中的所以接下来我们就来分别介绍“栈中的垃圾数据”和“堆中的垃圾数据”是如何回收的。
## 调用栈中的数据是如何回收的
首先是调用栈中的数据,我们还是通过一段示例代码的执行流程来分析其回收机制,具体如下:
```
function foo(){
var a = 1
var b = {name:"极客邦"}
function showName(){
var c = 2
var d = {name:"极客时间"}
}
showName()
}
foo()
```
当执行到第6行代码时其调用栈和堆空间状态图如下所示
![](https://static001.geekbang.org/resource/image/d8/b0/d807ca19c2c8853ef5a38dca0fb79ab0.jpg)
执行到showName函数时的内存模型
从图中可以看出原始类型的数据被分配到栈中引用类型的数据会被分配到堆中。当foo函数执行结束之后foo函数的执行上下文会从堆中被销毁掉那么它是怎么被销毁的呢下面我们就来分析一下。
在[上篇文章](https://time.geekbang.org/column/article/129596)中我们简单介绍过了如果执行到showName函数时那么JavaScript引擎会创建showName函数的执行上下文并将showName函数的执行上下文压入到调用栈中最终执行到showName函数时其调用栈就如上图所示。与此同时还有一个**记录当前执行状态的指针称为ESP**指向调用栈中showName函数的执行上下文表示当前正在执行showName函数。
接着当showName函数执行完成之后函数执行流程就进入了foo函数那这时就需要销毁showName函数的执行上下文了。ESP这时候就帮上忙了JavaScript会将ESP下移到foo函数的执行上下文**这个下移操作就是销毁showName函数执行上下文的过程**。
你可能会有点懵ESP指针向下移动怎么就能把showName的执行上下文销毁了呢具体你可以看下面这张移动ESP前后的对比图
![](https://static001.geekbang.org/resource/image/b8/f3/b899cb27c0d92c31f9377db59939aaf3.jpg)
从栈中回收showName执行上下文
从图中可以看出当showName函数执行结束之后ESP向下移动到foo函数的执行上下文中上面showName的执行上下文虽然保存在栈内存中但是已经是无效内存了。比如当foo函数再次调用另外一个函数时这块内容会被直接覆盖掉用来存放另外一个函数的执行上下文。
所以说,当一个函数执行结束之后,**JavaScript引擎会通过向下移动ESP来销毁该函数保存在栈中的执行上下文**。
## 堆中的数据是如何回收的
通过上面的讲解我想现在你应该已经知道当上面那段代码的foo函数执行结束之后ESP应该是指向全局执行上下文的那这样的话showName函数和foo函数的执行上下文就处于无效状态了不过保存在堆中的两个对象依然占用着空间如下图所示
![](https://static001.geekbang.org/resource/image/e8/8c/e80ff553417572f77973b08256b6928c.png)
foo函数执行结束后的内存状态
从图中可以看出1003和1050这两块内存依然被占用。**要回收堆中的垃圾数据就需要用到JavaScript中的垃圾回收器了**。
所以接下来我们就来通过Chrome的JavaScript引擎V8来分析下堆中的垃圾数据是如何回收的。
### 代际假说和分代收集
不过在正式介绍V8是如何实现回收之前你需要先学习下**代际假说The Generational Hypothesis**的内容,这是垃圾回收领域中一个重要的术语,后续垃圾回收的策略都是建立在该假说的基础之上的,所以很是重要。
**代际假说**有以下两个特点:
* 第一个是大部分对象在内存中存在的时间很短,简单来说,就是很多对象一经分配内存,很快就变得不可访问;
* 第二个是不死的对象,会活得更久。
其实这两个特点不仅仅适用于JavaScript同样适用于大多数的动态语言如Java、Python等。
有了代际假说的基础我们就可以来探讨V8是如何实现垃圾回收的了。
通常,垃圾回收算法有很多种,但是并没有哪一种能胜任所有的场景,你需要权衡各种场景,根据对象的生存周期的不同而使用不同的算法,以便达到最好的效果。
所以在V8中会把堆分为**新生代**和**老生代**两个区域,**新生代中存放的是生存时间短的对象,老生代中存放的生存时间久的对象**。
新生区通常只支持18M的容量而老生区支持的容量就大很多了。对于这两块区域V8分别使用两个不同的垃圾回收器以便更高效地实施垃圾回收。
* **副垃圾回收器,主要负责新生代的垃圾回收。**
* **主垃圾回收器,主要负责老生代的垃圾回收。**
### 垃圾回收器的工作流程
现在你知道了V8把堆分成两个区域——新生代和老生代并分别使用两个不同的垃圾回收器。其实**不论什么类型的垃圾回收器,它们都有一套共同的执行流程**。
第一步是标记空间中活动对象和非活动对象。所谓活动对象就是还在使用的对象,非活动对象就是可以进行垃圾回收的对象。
第二步是回收非活动对象所占据的内存。其实就是在所有的标记完成之后,统一清理内存中所有被标记为可回收的对象。
第三步是做内存整理。一般来说,频繁回收对象后,内存中就会存在大量不连续空间,我们把这些不连续的内存空间称为**内存碎片**。当内存中出现了大量的内存碎片之后,如果需要分配较大连续内存的时候,就有可能出现内存不足的情况。所以最后一步需要整理这些内存碎片,但这步其实是可选的,因为有的垃圾回收器不会产生内存碎片,比如接下来我们要介绍的副垃圾回收器。
那么接下来,我们就按照这个流程来分析新生代垃圾回收器(副垃圾回收器)和老生代垃圾回收器(主垃圾回收器)是如何处理垃圾回收的。
### 副垃圾回收器
副垃圾回收器主要负责新生区的垃圾回收。而通常情况下,大多数小的对象都会被分配到新生区,所以说这个区域虽然不大,但是垃圾回收还是比较频繁的。
新生代中用**Scavenge算法**来处理。所谓Scavenge算法是把新生代空间对半划分为两个区域一半是对象区域一半是空闲区域如下图所示
![](https://static001.geekbang.org/resource/image/4f/af/4f9310c7da631fa5a57f871099bfbeaf.png)
新生区要划分为对象区域和空闲区域
新加入的对象都会存放到对象区域,当对象区域快被写满时,就需要执行一次垃圾清理操作。
在垃圾回收过程中,首先要对对象区域中的垃圾做标记;标记完成之后,就进入垃圾清理阶段,副垃圾回收器会把这些存活的对象复制到空闲区域中,同时它还会把这些对象有序地排列起来,所以这个复制过程,也就相当于完成了内存整理操作,复制后空闲区域就没有内存碎片了。
完成复制后,对象区域与空闲区域进行角色翻转,也就是原来的对象区域变成空闲区域,原来的空闲区域变成了对象区域。这样就完成了垃圾对象的回收操作,同时这种**角色翻转的操作还能让新生代中的这两块区域无限重复使用下去**。
由于新生代中采用的Scavenge算法所以每次执行清理操作时都需要将存活的对象从对象区域复制到空闲区域。但复制操作需要时间成本如果新生区空间设置得太大了那么每次清理的时间就会过久所以**为了执行效率,一般新生区的空间会被设置得比较小**。
也正是因为新生区的空间不大所以很容易被存活的对象装满整个区域。为了解决这个问题JavaScript引擎采用了**对象晋升策略**,也就是经过两次垃圾回收依然还存活的对象,会被移动到老生区中。
### 主垃圾回收器
主垃圾回收器主要负责老生区中的垃圾回收。除了新生区中晋升的对象,一些大的对象会直接被分配到老生区。因此老生区中的对象有两个特点,一个是对象占用空间大,另一个是对象存活时间长。
由于老生区的对象比较大若要在老生区中使用Scavenge算法进行垃圾回收复制这些大的对象将会花费比较多的时间从而导致回收执行效率不高同时还会浪费一半的空间。因而主垃圾回收器是采用**标记-清除Mark-Sweep**的算法进行垃圾回收的。下面我们来看看该算法是如何工作的。
首先是标记过程阶段。标记阶段就是从一组根元素开始,递归遍历这组根元素,在这个遍历过程中,能到达的元素称为**活动对象**,没有到达的元素就可以判断为**垃圾数据**。
比如最开始的那段代码当showName函数执行退出之后这段代码的调用栈和堆空间如下图所示
![](https://static001.geekbang.org/resource/image/6c/69/6c8361d3e52c1c37a06699ed94652e69.png)
标记过程
从上图你可以大致看到垃圾数据的标记过程当showName函数执行结束之后ESP向下移动指向了foo函数的执行上下文这时候如果遍历调用栈是不会找到引用1003地址的变量也就意味着1003这块数据为垃圾数据被标记为红色。由于1050这块数据被变量b引用了所以这块数据会被标记为活动对象。这就是大致的标记过程。
接下来就是垃圾的清除过程。它和副垃圾回收器的垃圾清除过程完全不同,你可以理解这个过程是清除掉红色标记数据的过程,可参考下图大致理解下其清除过程:
![](https://static001.geekbang.org/resource/image/d0/85/d015db8ad0df7f0ccb1bdb8e31f96e85.png)
标记清除过程
上面的标记过程和清除过程就是标记-清除算法,不过对一块内存多次执行标记-清除算法后,会产生大量不连续的内存碎片。而碎片过多会导致大对象无法分配到足够的连续内存,于是又产生了另外一种算法——**标记-整理Mark-Compact**,这个标记过程仍然与标记-清除算法里的是一样的,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存。你可以参考下图:
![](https://static001.geekbang.org/resource/image/65/8c/652bd2df726d0aa5e67fe8489f39a18c.png)
标记整理过程
### 全停顿
现在你知道了V8是使用副垃圾回收器和主垃圾回收器处理垃圾回收的不过由于JavaScript是运行在主线程之上的一旦执行垃圾回收算法都需要将正在执行的JavaScript脚本暂停下来待垃圾回收完毕后再恢复脚本执行。我们把这种行为叫做**全停顿Stop-The-World**。
比如堆中的数据有1.5GBV8实现一次完整的垃圾回收需要1秒以上的时间这也是由于垃圾回收而引起JavaScript线程暂停执行的时间若是这样的时间花销那么应用的性能和响应能力都会直线下降。主垃圾回收器执行一次完整的垃圾回收流程如下图所示
![](https://static001.geekbang.org/resource/image/98/0c/9898646a08b46bce4f12f918f3c1e60c.png)
全停顿
在V8新生代的垃圾回收中因其空间较小且存活对象较少所以全停顿的影响不大但老生代就不一样了。如果在执行垃圾回收的过程中占用主线程时间过久就像上面图片展示的那样花费了200毫秒在这200毫秒内主线程是不能做其他事情的。比如页面正在执行一个JavaScript动画因为垃圾回收器在工作就会导致这个动画在这200毫秒内无法执行的这将会造成页面的卡顿现象。
为了降低老生代的垃圾回收而造成的卡顿V8将标记过程分为一个个的子标记过程同时让垃圾回收标记和JavaScript应用逻辑交替进行直到标记阶段完成我们把这个算法称为**增量标记Incremental Marking算法**。如下图所示:
![](https://static001.geekbang.org/resource/image/de/e7/de117fc96ae425ed90366e9060aa14e7.png)
增量标记
使用增量标记算法可以把一个完整的垃圾回收任务拆分为很多小的任务这些小的任务执行时间比较短可以穿插在其他的JavaScript任务中间执行这样当执行上述动画效果时就不会让用户因为垃圾回收任务而感受到页面的卡顿了。
## 总结
好了,今天就讲到这里,下面我们就来总结下今天的主要内容。
首先我们介绍了不同语言的垃圾回收策略然后又说明了栈中的数据是如何回收的最后重点讲解了JavaScript中的垃圾回收器是如何工作的。
从上面的分析你也能看出来,无论是垃圾回收的策略,还是处理全停顿的策略,往往都没有一个完美的解决方案,你需要花一些时间来做权衡,而这需要牺牲当前某几方面的指标来换取其他几个指标的提升。
其实站在工程师的视角,我们经常需要在满足需求的前提下,权衡各个指标的得失,把系统设计得尽可能适应最核心的需求。
生活中处理事情的原则也与之类似,古人很早就说过“两害相权取其轻,两利相权取其重”,所以与其患得患失,不如冷静地分析哪些才是核心诉求,然后果断决策牺牲哪些以使得利益最大化。
## 思考时间
今天留给你的思考题是你是如何判断JavaScript中内存泄漏的可以结合一些你在工作中避免内存泄漏的方法。
欢迎在留言区与我分享你的想法,也欢迎你在留言区记录你的思考过程。感谢阅读,如果你觉得这篇文章对你有帮助的话,也欢迎把它分享给更多的朋友。