# 38 | 案例分析(一):高性能限流器Guava RateLimiter 从今天开始,我们就进入案例分析模块了。 这个模块我们将分析四个经典的开源框架,看看它们是如何处理并发问题的,通过这四个案例的学习,相信你会对如何解决并发问题有个更深入的认识。 首先我们来看看**Guava RateLimiter是如何解决高并发场景下的限流问题的**。Guava是Google开源的Java类库,提供了一个工具类RateLimiter。我们先来看看RateLimiter的使用,让你对限流有个感官的印象。假设我们有一个线程池,它每秒只能处理两个任务,如果提交的任务过快,可能导致系统不稳定,这个时候就需要用到限流。 在下面的示例代码中,我们创建了一个流速为2个请求/秒的限流器,这里的流速该怎么理解呢?直观地看,2个请求/秒指的是每秒最多允许2个请求通过限流器,其实在Guava中,流速还有更深一层的意思:是一种匀速的概念,2个请求/秒等价于1个请求/500毫秒。 在向线程池提交任务之前,调用 `acquire()` 方法就能起到限流的作用。通过示例代码的执行结果,任务提交到线程池的时间间隔基本上稳定在500毫秒。 ``` //限流器流速:2个请求/秒 RateLimiter limiter = RateLimiter.create(2.0); //执行任务的线程池 ExecutorService es = Executors .newFixedThreadPool(1); //记录上一次执行时间 prev = System.nanoTime(); //测试执行20次 for (int i=0; i<20; i++){ //限流器限流 limiter.acquire(); //提交任务异步执行 es.execute(()->{ long cur=System.nanoTime(); //打印时间间隔:毫秒 System.out.println( (cur-prev)/1000_000); prev = cur; }); } 输出结果: ... 500 499 499 500 499 ``` ## 经典限流算法:令牌桶算法 Guava的限流器使用上还是很简单的,那它是如何实现的呢?Guava采用的是**令牌桶算法**,其**核心是要想通过限流器,必须拿到令牌**。也就是说,只要我们能够限制发放令牌的速率,那么就能控制流速了。令牌桶算法的详细描述如下: 1. 令牌以固定的速率添加到令牌桶中,假设限流的速率是 r/秒,则令牌每 1/r 秒会添加一个; 2. 假设令牌桶的容量是 b ,如果令牌桶已满,则新的令牌会被丢弃; 3. 请求能够通过限流器的前提是令牌桶中有令牌。 这个算法中,限流的速率 r 还是比较容易理解的,但令牌桶的容量 b 该怎么理解呢?b 其实是burst的简写,意义是**限流器允许的最大突发流量**。比如b=10,而且令牌桶中的令牌已满,此时限流器允许10个请求同时通过限流器,当然只是突发流量而已,这10个请求会带走10个令牌,所以后续的流量只能按照速率 r 通过限流器。 令牌桶这个算法,如何用Java实现呢?很可能你的直觉会告诉你生产者-消费者模式:一个生产者线程定时向阻塞队列中添加令牌,而试图通过限流器的线程则作为消费者线程,只有从阻塞队列中获取到令牌,才允许通过限流器。 这个算法看上去非常完美,而且实现起来非常简单,如果并发量不大,这个实现并没有什么问题。可实际情况却是使用限流的场景大部分都是高并发场景,而且系统压力已经临近极限了,此时这个实现就有问题了。问题就出在定时器上,在高并发场景下,当系统压力已经临近极限的时候,定时器的精度误差会非常大,同时定时器本身会创建调度线程,也会对系统的性能产生影响。 那还有什么好的实现方式呢?当然有,Guava的实现就没有使用定时器,下面我们就来看看它是如何实现的。 ## Guava如何实现令牌桶算法 Guava实现令牌桶算法,用了一个很简单的办法,其关键是**记录并动态计算下一令牌发放的时间**。下面我们以一个最简单的场景来介绍该算法的执行过程。假设令牌桶的容量为 b=1,限流速率 r = 1个请求/秒,如下图所示,如果当前令牌桶中没有令牌,下一个令牌的发放时间是在第3秒,而在第2秒的时候有一个线程T1请求令牌,此时该如何处理呢? ![](https://static001.geekbang.org/resource/image/39/ce/391179821a55fc798c9c17a6991c1dce.png) 线程T1请求令牌示意图 对于这个请求令牌的线程而言,很显然需要等待1秒,因为1秒以后(第3秒)它就能拿到令牌了。此时需要注意的是,下一个令牌发放的时间也要增加1秒,为什么呢?因为第3秒发放的令牌已经被线程T1预占了。处理之后如下图所示。 ![](https://static001.geekbang.org/resource/image/1a/87/1a4069c830e18de087ba7f490aa78087.png) 线程T1请求结束示意图 假设T1在预占了第3秒的令牌之后,马上又有一个线程T2请求令牌,如下图所示。 ![](https://static001.geekbang.org/resource/image/2c/2e/2cf695d0888a93e1e2d020d9514f5a2e.png) 线程T2请求令牌示意图 很显然,由于下一个令牌产生的时间是第4秒,所以线程T2要等待两秒的时间,才能获取到令牌,同时由于T2预占了第4秒的令牌,所以下一令牌产生时间还要增加1秒,完全处理之后,如下图所示。 ![](https://static001.geekbang.org/resource/image/68/f7/68c09a96049aacda7936c52b801c22f7.png) 线程T2请求结束示意图 上面线程T1、T2都是在**下一令牌产生时间之前**请求令牌,如果线程在**下一令牌产生时间之后**请求令牌会如何呢?假设在线程T1请求令牌之后的5秒,也就是第7秒,线程T3请求令牌,如下图所示。 ![](https://static001.geekbang.org/resource/image/e3/5c/e3125d72eb3d84eabf6de6ab987e695c.png) 线程T3请求令牌示意图 由于在第5秒已经产生了一个令牌,所以此时线程T3可以直接拿到令牌,而无需等待。在第7秒,实际上限流器能够产生3个令牌,第5、6、7秒各产生一个令牌。由于我们假设令牌桶的容量是1,所以第6、7秒产生的令牌就丢弃了,其实等价地你也可以认为是保留的第7秒的令牌,丢弃的第5、6秒的令牌,也就是说第7秒的令牌被线程T3占有了,于是下一令牌的的产生时间应该是第8秒,如下图所示。 ![](https://static001.geekbang.org/resource/image/ba/fc/baf159d05b2abf650839e29a2399a4fc.png) 线程T3请求结束示意图 通过上面简要地分析,你会发现,我们**只需要记录一个下一令牌产生的时间,并动态更新它,就能够轻松完成限流功能**。我们可以将上面的这个算法代码化,示例代码如下所示,依然假设令牌桶的容量是1。关键是**reserve()方法**,这个方法会为请求令牌的线程预分配令牌,同时返回该线程能够获取令牌的时间。其实现逻辑就是上面提到的:如果线程请求令牌的时间在下一令牌产生时间之后,那么该线程立刻就能够获取令牌;反之,如果请求时间在下一令牌产生时间之前,那么该线程是在下一令牌产生的时间获取令牌。由于此时下一令牌已经被该线程预占,所以下一令牌产生的时间需要加上1秒。 ``` class SimpleLimiter { //下一令牌产生时间 long next = System.nanoTime(); //发放令牌间隔:纳秒 long interval = 1000_000_000; //预占令牌,返回能够获取令牌的时间 synchronized long reserve(long now){ //请求时间在下一令牌产生时间之后 //重新计算下一令牌产生时间 if (now > next){ //将下一令牌产生时间重置为当前时间 next = now; } //能够获取令牌的时间 long at=next; //设置下一令牌产生时间 next += interval; //返回线程需要等待的时间 return Math.max(at, 0L); } //申请令牌 void acquire() { //申请令牌时的时间 long now = System.nanoTime(); //预占令牌 long at=reserve(now); long waitTime=max(at-now, 0); //按照条件等待 if(waitTime > 0) { try { TimeUnit.NANOSECONDS .sleep(waitTime); }catch(InterruptedException e){ e.printStackTrace(); } } } } ``` 如果令牌桶的容量大于1,又该如何处理呢?按照令牌桶算法,令牌要首先从令牌桶中出,所以我们需要按需计算令牌桶中的数量,当有线程请求令牌时,先从令牌桶中出。具体的代码实现如下所示。我们增加了一个**resync()方法**,在这个方法中,如果线程请求令牌的时间在下一令牌产生时间之后,会重新计算令牌桶中的令牌数,**新产生的令牌的计算公式是:(now-next)/interval**,你可对照上面的示意图来理解。reserve()方法中,则增加了先从令牌桶中出令牌的逻辑,不过需要注意的是,如果令牌是从令牌桶中出的,那么next就无需增加一个 interval 了。 ``` class SimpleLimiter { //当前令牌桶中的令牌数量 long storedPermits = 0; //令牌桶的容量 long maxPermits = 3; //下一令牌产生时间 long next = System.nanoTime(); //发放令牌间隔:纳秒 long interval = 1000_000_000; //请求时间在下一令牌产生时间之后,则 // 1.重新计算令牌桶中的令牌数 // 2.将下一个令牌发放时间重置为当前时间 void resync(long now) { if (now > next) { //新产生的令牌数 long newPermits=(now-next)/interval; //新令牌增加到令牌桶 storedPermits=min(maxPermits, storedPermits + newPermits); //将下一个令牌发放时间重置为当前时间 next = now; } } //预占令牌,返回能够获取令牌的时间 synchronized long reserve(long now){ resync(now); //能够获取令牌的时间 long at = next; //令牌桶中能提供的令牌 long fb=min(1, storedPermits); //令牌净需求:首先减掉令牌桶中的令牌 long nr = 1 - fb; //重新计算下一令牌产生时间 next = next + nr*interval; //重新计算令牌桶中的令牌 this.storedPermits -= fb; return at; } //申请令牌 void acquire() { //申请令牌时的时间 long now = System.nanoTime(); //预占令牌 long at=reserve(now); long waitTime=max(at-now, 0); //按照条件等待 if(waitTime > 0) { try { TimeUnit.NANOSECONDS .sleep(waitTime); }catch(InterruptedException e){ e.printStackTrace(); } } } } ``` ## 总结 经典的限流算法有两个,一个是**令牌桶算法(Token Bucket)**,另一个是**漏桶算法(Leaky Bucket)**。令牌桶算法是定时向令牌桶发送令牌,请求能够从令牌桶中拿到令牌,然后才能通过限流器;而漏桶算法里,请求就像水一样注入漏桶,漏桶会按照一定的速率自动将水漏掉,只有漏桶里还能注入水的时候,请求才能通过限流器。令牌桶算法和漏桶算法很像一个硬币的正反面,所以你可以参考令牌桶算法的实现来实现漏桶算法。 上面我们介绍了Guava是如何实现令牌桶算法的,我们的示例代码是对Guava RateLimiter的简化,Guava RateLimiter扩展了标准的令牌桶算法,比如还能支持预热功能。对于按需加载的缓存来说,预热后缓存能支持5万TPS的并发,但是在预热前5万TPS的并发直接就把缓存击垮了,所以如果需要给该缓存限流,限流器也需要支持预热功能,在初始阶段,限制的流速 r 很小,但是动态增长的。预热功能的实现非常复杂,Guava构建了一个积分函数来解决这个问题,如果你感兴趣,可以继续深入研究。 欢迎在留言区与我分享你的想法,也欢迎你在留言区记录你的思考过程。感谢阅读,如果你觉得这篇文章对你有帮助的话,也欢迎把它分享给更多的朋友。