# 45 | 自增id用完怎么办? MySQL里有很多自增的id,每个自增id都是定义了初始值,然后不停地往上加步长。虽然自然数是没有上限的,但是在计算机里,只要定义了表示这个数的字节长度,那它就有上限。比如,无符号整型(unsigned int)是4个字节,上限就是232\-1。 既然自增id有上限,就有可能被用完。但是,自增id用完了会怎么样呢? 今天这篇文章,我们就来看看MySQL里面的几种自增id,一起分析一下它们的值达到上限以后,会出现什么情况。 # 表定义自增值id 说到自增id,你第一个想到的应该就是表结构定义里的自增字段,也就是我在第39篇文章[《自增主键为什么不是连续的?》](https://time.geekbang.org/column/article/80531)中和你介绍过的自增主键id。 表定义的自增值达到上限后的逻辑是:再申请下一个id时,得到的值保持不变。 我们可以通过下面这个语句序列验证一下: ``` create table t(id int unsigned auto_increment primary key) auto_increment=4294967295; insert into t values(null); //成功插入一行 4294967295 show create table t; /* CREATE TABLE `t` ( `id` int(10) unsigned NOT NULL AUTO_INCREMENT, PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=4294967295; */ insert into t values(null); //Duplicate entry '4294967295' for key 'PRIMARY' ``` 可以看到,第一个insert语句插入数据成功后,这个表的AUTO\_INCREMENT没有改变(还是4294967295),就导致了第二个insert语句又拿到相同的自增id值,再试图执行插入语句,报主键冲突错误。 232\-1(4294967295)不是一个特别大的数,对于一个频繁插入删除数据的表来说,是可能会被用完的。因此在建表的时候你需要考察你的表是否有可能达到这个上限,如果有可能,就应该创建成8个字节的bigint unsigned。 # InnoDB系统自增row\_id 如果你创建的InnoDB表没有指定主键,那么InnoDB会给你创建一个不可见的,长度为6个字节的row\_id。InnoDB维护了一个全局的dict\_sys.row\_id值,所有无主键的InnoDB表,每插入一行数据,都将当前的dict\_sys.row\_id值作为要插入数据的row\_id,然后把dict\_sys.row\_id的值加1。 实际上,在代码实现时row\_id是一个长度为8字节的无符号长整型(bigint unsigned)。但是,InnoDB在设计时,给row\_id留的只是6个字节的长度,这样写到数据表中时只放了最后6个字节,所以row\_id能写到数据表中的值,就有两个特征: 1. row\_id写入表中的值范围,是从0到248\-1; 2. 当dict\_sys.row\_id=248时,如果再有插入数据的行为要来申请row\_id,拿到以后再取最后6个字节的话就是0。 也就是说,写入表的row\_id是从0开始到248\-1。达到上限后,下一个值就是0,然后继续循环。 当然,248\-1这个值本身已经很大了,但是如果一个MySQL实例跑得足够久的话,还是可能达到这个上限的。在InnoDB逻辑里,申请到row\_id=N后,就将这行数据写入表中;如果表中已经存在row\_id=N的行,新写入的行就会覆盖原有的行。 要验证这个结论的话,你可以通过gdb修改系统的自增row\_id来实现。注意,用gdb改变量这个操作是为了便于我们复现问题,只能在测试环境使用。 ![](https://static001.geekbang.org/resource/image/6a/9a/6a7bfd460f9e75afcfcfc4a963339a9a.png) 图1 row\_id用完的验证序列 ![](https://static001.geekbang.org/resource/image/5a/5c/5ad1fff81bda3a6b00ec84e84753fa5c.png) 图2 row\_id用完的效果验证 可以看到,在我用gdb将dict\_sys.row\_id设置为248之后,再插入的a=2的行会出现在表t的第一行,因为这个值的row\_id=0。之后再插入的a=3的行,由于row\_id=1,就覆盖了之前a=1的行,因为a=1这一行的row\_id也是1。 从这个角度看,我们还是应该在InnoDB表中主动创建自增主键。因为,表自增id到达上限后,再插入数据时报主键冲突错误,是更能被接受的。 毕竟覆盖数据,就意味着数据丢失,影响的是数据可靠性;报主键冲突,是插入失败,影响的是可用性。而一般情况下,可靠性优先于可用性。 # Xid 在第15篇文章[《答疑文章(一):日志和索引相关问题》](https://time.geekbang.org/column/article/73161)中,我和你介绍redo log和binlog相配合的时候,提到了它们有一个共同的字段叫作Xid。它在MySQL中是用来对应事务的。 那么,Xid在MySQL内部是怎么生成的呢? MySQL内部维护了一个全局变量global\_query\_id,每次执行语句的时候将它赋值给Query\_id,然后给这个变量加1。如果当前语句是这个事务执行的第一条语句,那么MySQL还会同时把Query\_id赋值给这个事务的Xid。 而global\_query\_id是一个纯内存变量,重启之后就清零了。所以你就知道了,在同一个数据库实例中,不同事务的Xid也是有可能相同的。 但是MySQL重启之后会重新生成新的binlog文件,这就保证了,同一个binlog文件里,Xid一定是惟一的。 虽然MySQL重启不会导致同一个binlog里面出现两个相同的Xid,但是如果global\_query\_id达到上限后,就会继续从0开始计数。从理论上讲,还是就会出现同一个binlog里面出现相同Xid的场景。 因为global\_query\_id定义的长度是8个字节,这个自增值的上限是264\-1。要出现这种情况,必须是下面这样的过程: 1. 执行一个事务,假设Xid是A; 2. 接下来执行264次查询语句,让global\_query\_id回到A; 3. 再启动一个事务,这个事务的Xid也是A。 不过,264这个值太大了,大到你可以认为这个可能性只会存在于理论上。 # Innodb trx\_id Xid和InnoDB的trx\_id是两个容易混淆的概念。 Xid是由server层维护的。InnoDB内部使用Xid,就是为了能够在InnoDB事务和server之间做关联。但是,InnoDB自己的trx\_id,是另外维护的。 其实,你应该非常熟悉这个trx\_id。它就是在我们在第8篇文章[《事务到底是隔离的还是不隔离的?》](https://time.geekbang.org/column/article/70562)中讲事务可见性时,用到的事务id(transaction id)。 InnoDB内部维护了一个max\_trx\_id全局变量,每次需要申请一个新的trx\_id时,就获得max\_trx\_id的当前值,然后并将max\_trx\_id加1。 InnoDB数据可见性的核心思想是:每一行数据都记录了更新它的trx\_id,当一个事务读到一行数据的时候,判断这个数据是否可见的方法,就是通过事务的一致性视图与这行数据的trx\_id做对比。 对于正在执行的事务,你可以从information\_schema.innodb\_trx表中看到事务的trx\_id。 我在上一篇文章的末尾留给你的思考题,就是关于从innodb\_trx表里面查到的trx\_id的。现在,我们一起来看一个事务现场: ![](https://static001.geekbang.org/resource/image/94/7c/94c704190f7609b3e6443688368cd97c.png) 图3 事务的trx\_id session B里,我从innodb\_trx表里查出的这两个字段,第二个字段trx\_mysql\_thread\_id就是线程id。显示线程id,是为了说明这两次查询看到的事务对应的线程id都是5,也就是session A所在的线程。 可以看到,T2时刻显示的trx\_id是一个很大的数;T4时刻显示的trx\_id是1289,看上去是一个比较正常的数字。这是什么原因呢? 实际上,在T1时刻,session A还没有涉及到更新,是一个只读事务。而对于只读事务,InnoDB并不会分配trx\_id。也就是说: 1. 在T1时刻,trx\_id的值其实就是0。而这个很大的数,只是显示用的。一会儿我会再和你说说这个数据的生成逻辑。 2. 直到session A 在T3时刻执行insert语句的时候,InnoDB才真正分配了trx\_id。所以,T4时刻,session B查到的这个trx\_id的值就是1289。 需要注意的是,除了显而易见的修改类语句外,如果在select 语句后面加上for update,这个事务也不是只读事务。 在上一篇文章的评论区,有同学提出,实验的时候发现不止加1。这是因为: 1. update 和 delete语句除了事务本身,还涉及到标记删除旧数据,也就是要把数据放到purge队列里等待后续物理删除,这个操作也会把max\_trx\_id+1, 因此在一个事务中至少加2; 2. InnoDB的后台操作,比如表的索引信息统计这类操作,也是会启动内部事务的,因此你可能看到,trx\_id值并不是按照加1递增的。 那么,**T2时刻查到的这个很大的数字是怎么来的呢?** 其实,这个数字是每次查询的时候由系统临时计算出来的。它的算法是:把当前事务的trx变量的指针地址转成整数,再加上248。使用这个算法,就可以保证以下两点: 1. 因为同一个只读事务在执行期间,它的指针地址是不会变的,所以不论是在 innodb\_trx还是在innodb\_locks表里,同一个只读事务查出来的trx\_id就会是一样的。 2. 如果有并行的多个只读事务,每个事务的trx变量的指针地址肯定不同。这样,不同的并发只读事务,查出来的trx\_id就是不同的。 那么,**为什么还要再加上248呢?** 在显示值里面加上248,目的是要保证只读事务显示的trx\_id值比较大,正常情况下就会区别于读写事务的id。但是,trx\_id跟row\_id的逻辑类似,定义长度也是8个字节。因此,在理论上还是可能出现一个读写事务与一个只读事务显示的trx\_id相同的情况。不过这个概率很低,并且也没有什么实质危害,可以不管它。 另一个问题是,**只读事务不分配trx\_id,有什么好处呢?** * 一个好处是,这样做可以减小事务视图里面活跃事务数组的大小。因为当前正在运行的只读事务,是不影响数据的可见性判断的。所以,在创建事务的一致性视图时,InnoDB就只需要拷贝读写事务的trx\_id。 * 另一个好处是,可以减少trx\_id的申请次数。在InnoDB里,即使你只是执行一个普通的select语句,在执行过程中,也是要对应一个只读事务的。所以只读事务优化后,普通的查询语句不需要申请trx\_id,就大大减少了并发事务申请trx\_id的锁冲突。 由于只读事务不分配trx\_id,一个自然而然的结果就是trx\_id的增加速度变慢了。 但是,max\_trx\_id会持久化存储,重启也不会重置为0,那么从理论上讲,只要一个MySQL服务跑得足够久,就可能出现max\_trx\_id达到248\-1的上限,然后从0开始的情况。 当达到这个状态后,MySQL就会持续出现一个脏读的bug,我们来复现一下这个bug。 首先我们需要把当前的max\_trx\_id先修改成248\-1。注意:这个case里使用的是可重复读隔离级别。具体的操作流程如下: ![](https://static001.geekbang.org/resource/image/13/c0/13735f955a437a848895787bf9c723c0.png) 图 4 复现脏读 由于我们已经把系统的max\_trx\_id设置成了248\-1,所以在session A启动的事务TA的低水位就是248\-1。 在T2时刻,session B执行第一条update语句的事务id就是248\-1,而第二条update语句的事务id就是0了,这条update语句执行后生成的数据版本上的trx\_id就是0。 在T3时刻,session A执行select语句的时候,判断可见性发现,c=3这个数据版本的trx\_id,小于事务TA的低水位,因此认为这个数据可见。 但,这个是脏读。 由于低水位值会持续增加,而事务id从0开始计数,就导致了系统在这个时刻之后,所有的查询都会出现脏读的。 并且,MySQL重启时max\_trx\_id也不会清0,也就是说重启MySQL,这个bug仍然存在。 那么,**这个bug也是只存在于理论上吗?** 假设一个MySQL实例的TPS是每秒50万,持续这个压力的话,在17.8年后,就会出现这个情况。如果TPS更高,这个年限自然也就更短了。但是,从MySQL的真正开始流行到现在,恐怕都还没有实例跑到过这个上限。不过,这个bug是只要MySQL实例服务时间够长,就会必然出现的。 当然,这个例子更现实的意义是,可以加深我们对低水位和数据可见性的理解。你也可以借此机会再回顾下第8篇文章[《事务到底是隔离的还是不隔离的?》](https://time.geekbang.org/column/article/70562)中的相关内容。 # thread\_id 接下来,我们再看看线程id(thread\_id)。其实,线程id才是MySQL中最常见的一种自增id。平时我们在查各种现场的时候,show processlist里面的第一列,就是thread\_id。 thread\_id的逻辑很好理解:系统保存了一个全局变量thread\_id\_counter,每新建一个连接,就将thread\_id\_counter赋值给这个新连接的线程变量。 thread\_id\_counter定义的大小是4个字节,因此达到232\-1后,它就会重置为0,然后继续增加。但是,你不会在show processlist里看到两个相同的thread\_id。 这,是因为MySQL设计了一个唯一数组的逻辑,给新线程分配thread\_id的时候,逻辑代码是这样的: ``` do { new_id= thread_id_counter++; } while (!thread_ids.insert_unique(new_id).second); ``` 这个代码逻辑简单而且实现优雅,相信你一看就能明白。 # 小结 今天这篇文章,我给你介绍了MySQL不同的自增id达到上限以后的行为。数据库系统作为一个可能需要7\*24小时全年无休的服务,考虑这些边界是非常有必要的。 每种自增id有各自的应用场景,在达到上限后的表现也不同: 1. 表的自增id达到上限后,再申请时它的值就不会改变,进而导致继续插入数据时报主键冲突的错误。 2. row\_id达到上限后,则会归0再重新递增,如果出现相同的row\_id,后写的数据会覆盖之前的数据。 3. Xid只需要不在同一个binlog文件中出现重复值即可。虽然理论上会出现重复值,但是概率极小,可以忽略不计。 4. InnoDB的max\_trx\_id 递增值每次MySQL重启都会被保存起来,所以我们文章中提到的脏读的例子就是一个必现的bug,好在留给我们的时间还很充裕。 5. thread\_id是我们使用中最常见的,而且也是处理得最好的一个自增id逻辑了。 当然,在MySQL里还有别的自增id,比如table\_id、binlog文件序号等,就留给你去验证和探索了。 不同的自增id有不同的上限值,上限值的大小取决于声明的类型长度。而我们专栏声明的上限id就是45,所以今天这篇文章也是我们的最后一篇技术文章了。 既然没有下一个id了,课后也就没有思考题了。今天,我们换一个轻松的话题,请你来说说,读完专栏以后有什么感想吧。 这个“感想”,既可以是你读完专栏前后对某一些知识点的理解发生的变化,也可以是你积累的学习专栏文章的好方法,当然也可以是吐槽或者对未来的期望。 欢迎你给我留言,我们在评论区见,也欢迎你把这篇文章分享给更多的朋友一起阅读。