185 lines
15 KiB
Markdown
185 lines
15 KiB
Markdown
|
# 12 | 为什么我的MySQL会“抖”一下?
|
|||
|
|
|||
|
平时的工作中,不知道你有没有遇到过这样的场景,一条SQL语句,正常执行的时候特别快,但是有时也不知道怎么回事,它就会变得特别慢,并且这样的场景很难复现,它不只随机,而且持续时间还很短。
|
|||
|
|
|||
|
看上去,这就像是数据库“抖”了一下。今天,我们就一起来看一看这是什么原因。
|
|||
|
|
|||
|
# 你的SQL语句为什么变“慢”了
|
|||
|
|
|||
|
在前面第2篇文章[《日志系统:一条SQL更新语句是如何执行的?》](https://time.geekbang.org/column/article/68633)中,我为你介绍了WAL机制。现在你知道了,InnoDB在处理更新语句的时候,只做了写日志这一个磁盘操作。这个日志叫作redo log(重做日志),也就是《孔乙己》里咸亨酒店掌柜用来记账的粉板,在更新内存写完redo log后,就返回给客户端,本次更新成功。
|
|||
|
|
|||
|
做下类比的话,掌柜记账的账本是数据文件,记账用的粉板是日志文件(redo log),掌柜的记忆就是内存。
|
|||
|
|
|||
|
掌柜总要找时间把账本更新一下,这对应的就是把内存里的数据写入磁盘的过程,术语就是flush。在这个flush操作执行之前,孔乙己的赊账总额,其实跟掌柜手中账本里面的记录是不一致的。因为孔乙己今天的赊账金额还只在粉板上,而账本里的记录是老的,还没把今天的赊账算进去。
|
|||
|
|
|||
|
**当内存数据页跟磁盘数据页内容不一致的时候,我们称这个内存页为“脏页”。内存数据写入到磁盘后,内存和磁盘上的数据页的内容就一致了,称为“干净页”**。
|
|||
|
|
|||
|
不论是脏页还是干净页,都在内存中。在这个例子里,内存对应的就是掌柜的记忆。
|
|||
|
|
|||
|
接下来,我们用一个示意图来展示一下“孔乙己赊账”的整个操作过程。假设原来孔乙己欠账10文,这次又要赊9文。
|
|||
|
|
|||
|
![](https://static001.geekbang.org/resource/image/34/da/349cfab9e4f5d2a75e07b2132a301fda.jpeg)
|
|||
|
|
|||
|
图1 “孔乙己赊账”更新和flush过程
|
|||
|
|
|||
|
回到文章开头的问题,你不难想象,平时执行很快的更新操作,其实就是在写内存和日志,而MySQL偶尔“抖”一下的那个瞬间,可能就是在刷脏页(flush)。
|
|||
|
|
|||
|
那么,什么情况会引发数据库的flush过程呢?
|
|||
|
|
|||
|
我们还是继续用咸亨酒店掌柜的这个例子,想一想:掌柜在什么情况下会把粉板上的赊账记录改到账本上?
|
|||
|
|
|||
|
* 第一种场景是,粉板满了,记不下了。这时候如果再有人来赊账,掌柜就只得放下手里的活儿,将粉板上的记录擦掉一些,留出空位以便继续记账。当然在擦掉之前,他必须先将正确的账目记录到账本中才行。
|
|||
|
这个场景,对应的就是InnoDB的redo log写满了。这时候系统会停止所有更新操作,把checkpoint往前推进,redo log留出空间可以继续写。我在第二讲画了一个redo log的示意图,这里我改成环形,便于大家理解。
|
|||
|
|
|||
|
![](https://static001.geekbang.org/resource/image/a2/e5/a25bdbbfc2cfc5d5e20690547fe7f2e5.jpg)
|
|||
|
|
|||
|
图2 redo log状态图
|
|||
|
|
|||
|
checkpoint可不是随便往前修改一下位置就可以的。比如图2中,把checkpoint位置从CP推进到CP’,就需要将两个点之间的日志(浅绿色部分),对应的所有脏页都flush到磁盘上。之后,图中从write pos到CP’之间就是可以再写入的redo log的区域。
|
|||
|
|
|||
|
* 第二种场景是,这一天生意太好,要记住的事情太多,掌柜发现自己快记不住了,赶紧找出账本把孔乙己这笔账先加进去。
|
|||
|
这种场景,对应的就是系统内存不足。当需要新的内存页,而内存不够用的时候,就要淘汰一些数据页,空出内存给别的数据页使用。如果淘汰的是“脏页”,就要先将脏页写到磁盘。
|
|||
|
你一定会说,这时候难道不能直接把内存淘汰掉,下次需要请求的时候,从磁盘读入数据页,然后拿redo log出来应用不就行了?这里其实是从性能考虑的。如果刷脏页一定会写盘,就保证了每个数据页有两种状态:
|
|||
|
|
|||
|
* 一种是内存里存在,内存里就肯定是正确的结果,直接返回;
|
|||
|
* 另一种是内存里没有数据,就可以肯定数据文件上是正确的结果,读入内存后返回。
|
|||
|
这样的效率最高。
|
|||
|
* 第三种场景是,生意不忙的时候,或者打烊之后。这时候柜台没事,掌柜闲着也是闲着,不如更新账本。
|
|||
|
这种场景,对应的就是MySQL认为系统“空闲”的时候。当然,MySQL“这家酒店”的生意好起来可是会很快就能把粉板记满的,所以“掌柜”要合理地安排时间,即使是“生意好”的时候,也要见缝插针地找时间,只要有机会就刷一点“脏页”。
|
|||
|
|
|||
|
* 第四种场景是,年底了咸亨酒店要关门几天,需要把账结清一下。这时候掌柜要把所有账都记到账本上,这样过完年重新开张的时候,就能就着账本明确账目情况了。
|
|||
|
这种场景,对应的就是MySQL正常关闭的情况。这时候,MySQL会把内存的脏页都flush到磁盘上,这样下次MySQL启动的时候,就可以直接从磁盘上读数据,启动速度会很快。
|
|||
|
|
|||
|
|
|||
|
接下来,**你可以分析一下上面四种场景对性能的影响。**
|
|||
|
|
|||
|
其中,第三种情况是属于MySQL空闲时的操作,这时系统没什么压力,而第四种场景是数据库本来就要关闭了。这两种情况下,你不会太关注“性能”问题。所以这里,我们主要来分析一下前两种场景下的性能问题。
|
|||
|
|
|||
|
第一种是“redo log写满了,要flush脏页”,这种情况是InnoDB要尽量避免的。因为出现这种情况的时候,整个系统就不能再接受更新了,所有的更新都必须堵住。如果你从监控上看,这时候更新数会跌为0。
|
|||
|
|
|||
|
第二种是“内存不够用了,要先将脏页写到磁盘”,这种情况其实是常态。**InnoDB用缓冲池(buffer pool)管理内存,缓冲池中的内存页有三种状态:**
|
|||
|
|
|||
|
* 第一种是,还没有使用的;
|
|||
|
* 第二种是,使用了并且是干净页;
|
|||
|
* 第三种是,使用了并且是脏页。
|
|||
|
|
|||
|
InnoDB的策略是尽量使用内存,因此对于一个长时间运行的库来说,未被使用的页面很少。
|
|||
|
|
|||
|
而当要读入的数据页没有在内存的时候,就必须到缓冲池中申请一个数据页。这时候只能把最久不使用的数据页从内存中淘汰掉:如果要淘汰的是一个干净页,就直接释放出来复用;但如果是脏页呢,就必须将脏页先刷到磁盘,变成干净页后才能复用。
|
|||
|
|
|||
|
所以,刷脏页虽然是常态,但是出现以下这两种情况,都是会明显影响性能的:
|
|||
|
|
|||
|
1. 一个查询要淘汰的脏页个数太多,会导致查询的响应时间明显变长;
|
|||
|
|
|||
|
2. 日志写满,更新全部堵住,写性能跌为0,这种情况对敏感业务来说,是不能接受的。
|
|||
|
|
|||
|
|
|||
|
所以,InnoDB需要有控制脏页比例的机制,来尽量避免上面的这两种情况。
|
|||
|
|
|||
|
# InnoDB刷脏页的控制策略
|
|||
|
|
|||
|
接下来,我就来和你说说InnoDB脏页的控制策略,以及和这些策略相关的参数。
|
|||
|
|
|||
|
首先,你要正确地告诉InnoDB所在主机的IO能力,这样InnoDB才能知道需要全力刷脏页的时候,可以刷多快。
|
|||
|
|
|||
|
这就要用到innodb\_io\_capacity这个参数了,它会告诉InnoDB你的磁盘能力。这个值我建议你设置成磁盘的IOPS。磁盘的IOPS可以通过fio这个工具来测试,下面的语句是我用来测试磁盘随机读写的命令:
|
|||
|
|
|||
|
```
|
|||
|
fio -filename=$filename -direct=1 -iodepth 1 -thread -rw=randrw -ioengine=psync -bs=16k -size=500M -numjobs=10 -runtime=10 -group_reporting -name=mytest
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
其实,因为没能正确地设置innodb\_io\_capacity参数,而导致的性能问题也比比皆是。之前,就曾有其他公司的开发负责人找我看一个库的性能问题,说MySQL的写入速度很慢,TPS很低,但是数据库主机的IO压力并不大。经过一番排查,发现罪魁祸首就是这个参数的设置出了问题。
|
|||
|
|
|||
|
他的主机磁盘用的是SSD,但是innodb\_io\_capacity的值设置的是300。于是,InnoDB认为这个系统的能力就这么差,所以刷脏页刷得特别慢,甚至比脏页生成的速度还慢,这样就造成了脏页累积,影响了查询和更新性能。
|
|||
|
|
|||
|
虽然我们现在已经定义了“全力刷脏页”的行为,但平时总不能一直是全力刷吧?毕竟磁盘能力不能只用来刷脏页,还需要服务用户请求。所以接下来,我们就一起看看InnoDB怎么控制引擎按照“全力”的百分比来刷脏页。
|
|||
|
|
|||
|
根据我前面提到的知识点,试想一下,**如果你来设计策略控制刷脏页的速度,会参考哪些因素呢?**
|
|||
|
|
|||
|
这个问题可以这么想,如果刷太慢,会出现什么情况?首先是内存脏页太多,其次是redo log写满。
|
|||
|
|
|||
|
所以,InnoDB的刷盘速度就是要参考这两个因素:一个是脏页比例,一个是redo log写盘速度。
|
|||
|
|
|||
|
InnoDB会根据这两个因素先单独算出两个数字。
|
|||
|
|
|||
|
参数innodb\_max\_dirty\_pages\_pct是脏页比例上限,默认值是75%。InnoDB会根据当前的脏页比例(假设为M),算出一个范围在0到100之间的数字,计算这个数字的伪代码类似这样:
|
|||
|
|
|||
|
```
|
|||
|
F1(M)
|
|||
|
{
|
|||
|
if M>=innodb_max_dirty_pages_pct then
|
|||
|
return 100;
|
|||
|
return 100*M/innodb_max_dirty_pages_pct;
|
|||
|
}
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
InnoDB每次写入的日志都有一个序号,当前写入的序号跟checkpoint对应的序号之间的差值,我们假设为N。InnoDB会根据这个N算出一个范围在0到100之间的数字,这个计算公式可以记为F2(N)。F2(N)算法比较复杂,你只要知道N越大,算出来的值越大就好了。
|
|||
|
|
|||
|
然后,**根据上述算得的F1(M)和F2(N)两个值,取其中较大的值记为R,之后引擎就可以按照innodb\_io\_capacity定义的能力乘以R%来控制刷脏页的速度。**
|
|||
|
|
|||
|
上述的计算流程比较抽象,不容易理解,所以我画了一个简单的流程图。图中的F1、F2就是上面我们通过脏页比例和redo log写入速度算出来的两个值。
|
|||
|
|
|||
|
![](https://static001.geekbang.org/resource/image/cc/74/cc44c1d080141aa50df6a91067475374.png)
|
|||
|
|
|||
|
图3 InnoDB刷脏页速度策略
|
|||
|
|
|||
|
现在你知道了,InnoDB会在后台刷脏页,而刷脏页的过程是要将内存页写入磁盘。所以,无论是你的查询语句在需要内存的时候可能要求淘汰一个脏页,还是由于刷脏页的逻辑会占用IO资源并可能影响到了你的更新语句,都可能是造成你从业务端感知到MySQL“抖”了一下的原因。
|
|||
|
|
|||
|
要尽量避免这种情况,你就要合理地设置innodb\_io\_capacity的值,并且**平时要多关注脏页比例,不要让它经常接近75%**。
|
|||
|
|
|||
|
其中,脏页比例是通过Innodb\_buffer\_pool\_pages\_dirty/Innodb\_buffer\_pool\_pages\_total得到的,具体的命令参考下面的代码:
|
|||
|
|
|||
|
```
|
|||
|
mysql> select VARIABLE_VALUE into @a from global_status where VARIABLE_NAME = 'Innodb_buffer_pool_pages_dirty';
|
|||
|
select VARIABLE_VALUE into @b from global_status where VARIABLE_NAME = 'Innodb_buffer_pool_pages_total';
|
|||
|
select @a/@b;
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
接下来,我们再看一个有趣的策略。
|
|||
|
|
|||
|
一旦一个查询请求需要在执行过程中先flush掉一个脏页时,这个查询就可能要比平时慢了。而MySQL中的一个机制,可能让你的查询会更慢:在准备刷一个脏页的时候,如果这个数据页旁边的数据页刚好是脏页,就会把这个“邻居”也带着一起刷掉;而且这个把“邻居”拖下水的逻辑还可以继续蔓延,也就是对于每个邻居数据页,如果跟它相邻的数据页也还是脏页的话,也会被放到一起刷。
|
|||
|
|
|||
|
在InnoDB中,innodb\_flush\_neighbors 参数就是用来控制这个行为的,值为1的时候会有上述的“连坐”机制,值为0时表示不找邻居,自己刷自己的。
|
|||
|
|
|||
|
找“邻居”这个优化在机械硬盘时代是很有意义的,可以减少很多随机IO。机械硬盘的随机IOPS一般只有几百,相同的逻辑操作减少随机IO就意味着系统性能的大幅度提升。
|
|||
|
|
|||
|
而如果使用的是SSD这类IOPS比较高的设备的话,我就建议你把innodb\_flush\_neighbors的值设置成0。因为这时候IOPS往往不是瓶颈,而“只刷自己”,就能更快地执行完必要的刷脏页操作,减少SQL语句响应时间。
|
|||
|
|
|||
|
在MySQL 8.0中,innodb\_flush\_neighbors参数的默认值已经是0了。
|
|||
|
|
|||
|
# 小结
|
|||
|
|
|||
|
今天这篇文章,我延续第2篇中介绍的WAL的概念,和你解释了这个机制后续需要的刷脏页操作和执行时机。利用WAL技术,数据库将随机写转换成了顺序写,大大提升了数据库的性能。
|
|||
|
|
|||
|
但是,由此也带来了内存脏页的问题。脏页会被后台线程自动flush,也会由于数据页淘汰而触发flush,而刷脏页的过程由于会占用资源,可能会让你的更新和查询语句的响应时间长一些。在文章里,我也给你介绍了控制刷脏页的方法和对应的监控方式。
|
|||
|
|
|||
|
文章最后,我给你留下一个思考题吧。
|
|||
|
|
|||
|
一个内存配置为128GB、innodb\_io\_capacity设置为20000的大规格实例,正常会建议你将redo log设置成4个1GB的文件。
|
|||
|
|
|||
|
但如果你在配置的时候不慎将redo log设置成了1个100M的文件,会发生什么情况呢?又为什么会出现这样的情况呢?
|
|||
|
|
|||
|
你可以把你的分析结论写在留言区里,我会在下一篇文章的末尾和你讨论这个问题。感谢你的收听,也欢迎你把这篇文章分享给更多的朋友一起阅读。
|
|||
|
|
|||
|
# 上期问题时间
|
|||
|
|
|||
|
上期我留给你的问题是,给一个学号字段创建索引,有哪些方法。
|
|||
|
|
|||
|
由于这个学号的规则,无论是正向还是反向的前缀索引,重复度都比较高。因为维护的只是一个学校的,因此前面6位(其中,前三位是所在城市编号、第四到第六位是学校编号)其实是固定的,邮箱后缀都是@gamil.com,因此可以只存入学年份加顺序编号,它们的长度是9位。
|
|||
|
|
|||
|
而其实在此基础上,可以用数字类型来存这9位数字。比如201100001,这样只需要占4个字节。其实这个就是一种hash,只是它用了最简单的转换规则:字符串转数字的规则,而刚好我们设定的这个背景,可以保证这个转换后结果的唯一性。
|
|||
|
|
|||
|
评论区中,也有其他一些很不错的见解。
|
|||
|
|
|||
|
评论用户@封建的风 说,一个学校的总人数这种数据量,50年才100万学生,这个表肯定是小表。为了业务简单,直接存原来的字符串。这个答复里面包含了“优化成本和收益”的思想,我觉得值得at出来。
|
|||
|
|
|||
|
@小潘 同学提了另外一个极致的方向。如果碰到表数据量特别大的场景,通过这种方式的收益是很不错的。
|
|||
|
|
|||
|
**评论区留言点赞板:**
|
|||
|
|
|||
|
> @lttzzlll ,提到了用整型存“四位年份+五位编号”的方法;
|
|||
|
> 由于整个学号的值超过了int上限,@老杨同志 也提到了用8个字节的bigint来存的方法。
|
|||
|
|