266 lines
19 KiB
Markdown
266 lines
19 KiB
Markdown
|
# 29 | 中端总结:不遗余力地进行代码优化
|
|||
|
|
|||
|
你好,我是宫文学。
|
|||
|
|
|||
|
今天这一讲,我继续带你来总结前面解析的7种真实的编译器中,**中端部分**的特征和编译技术。
|
|||
|
|
|||
|
在课程的[第1讲](https://time.geekbang.org/column/article/242479),我也给你总结过编译器的中端的主要作用,就是实现各种优化。并且在中端实现的优化,基本上都是机器无关的。而优化是在IR上进行的。
|
|||
|
|
|||
|
所以,今天这一讲,我们主要来总结以下这两方面的问题:
|
|||
|
|
|||
|
* **第一,是对IR的总结。**我在[第6讲](https://time.geekbang.org/column/article/247700)中曾经讲过,IR分为HIR、MIR和LIR三个层次,可以采用线性结构、图、树等多种数据结构。那么基于我们对实际编译器的研究,再一起来总结一下它们的IR的特点。
|
|||
|
* **第二,是对优化算法的总结。**在[第7讲](https://time.geekbang.org/column/article/248770),我们把各种优化算法做了一个总体的梳理。现在就是时候,来总结一下编译器中的实际实现了。
|
|||
|
|
|||
|
通过今天的总结,你能够对中端的两大主题IR和优化,形成更加深入的理解,从而更有利于你熟练运用编译技术。
|
|||
|
|
|||
|
好了,我们先来把前面学到的IR的相关知识,来系统地梳理和印证一下吧。
|
|||
|
|
|||
|
## 对IR的总结
|
|||
|
|
|||
|
通过对前面几个真实编译器的分析,我们会发现IR方面的几个重要特征:SSA已经成为主流;Sea of Nodes展现出令人瞩目的优势;另外,一个编译器中的IR,既要能表示抽象度比较高的操作,也要能表示抽象度比较低的、接近机器码的操作。
|
|||
|
|
|||
|
### SSA成为主流
|
|||
|
|
|||
|
通过学习前面的课程,我们会发现,符合SSA格式的IR成为了主流。Java和JavaScript的Sea of Nodes,是符合SSA的;Golang是符合SSA的;Julia自己的IR,虽然最早不是SSA格式的,但后来也改成了SSA;而Julia所采用的LLVM工具,其IR也是SSA格式的。
|
|||
|
|
|||
|
**SSA意味着什么呢?**源代码中的一个变量,会变成多个版本,每次赋值都形成一个新版本。在SSA中,它们都叫做一个**值(Value)**,对变量的赋值就是**对值的定义(def)**。这个值定义出来之后,就可以在定义其他值的时候**被使用(use)**,因此就形成了清晰的“使用-定义”链(use-def)。
|
|||
|
|
|||
|
这种清晰的use-def链会给优化算法提供很多的便利:
|
|||
|
|
|||
|
* 如果一个值定义了,但没有被使用,那就可以做**死代码删除**。
|
|||
|
* 如果对某个值实现了常数折叠,那么顺着def-use链,我们就可以马上把该值替换成常数,从而实现**常数传播**。
|
|||
|
* 如果两个值的定义是一样的,那么这两个值也一定是一样的,因此就可以去掉一个,从而实现**公共子表达式消除**;而如果不采取SSA,实现CSE(公共子表达式消除)需要做一个**数据流分析**,来确定表达式的变量值并没有发生变化。
|
|||
|
|
|||
|
针对最后一种情况,也就是公共子表达式消除,我再给你展开讲解一下,让你充分体会SSA和传统IR的区别。
|
|||
|
|
|||
|
我们知道,基于传统的IR,要做公共子表达式消除,就需要专门做一个“可用表达式”的分析。像下图展示的那样,每扫描一遍代码,就要往一个集合里增加一个可用的表达式。
|
|||
|
|
|||
|
**为什么叫做可用表达式呢?**因为变量可能被二次赋值,就像图中的变量c那样。在二次赋值以后,之前的表达式“c:=a+b”就不可用了。
|
|||
|
|
|||
|
![](https://static001.geekbang.org/resource/image/64/ba/6415ed5ce7c4e2f4d1ee7565d4381fba.jpg)
|
|||
|
|
|||
|
图1:变量c二次赋值后,各个位置的可用表达式集合
|
|||
|
|
|||
|
在后面,当替换公共子表达式的时候,我们可以把“e:=a+b”替换成“e:=d”,这样就可以少做一次计算,实现了优化的目标。
|
|||
|
|
|||
|
而如果采用SSA格式,上面这几行语句就可以改写为下图中的样子:
|
|||
|
|
|||
|
![](https://static001.geekbang.org/resource/image/cb/77/cb940936a68c3ecf5e9f444cf1606177.jpg)
|
|||
|
|
|||
|
图2:用SSA格式的IR改写的程序
|
|||
|
|
|||
|
可以看到,原来的变量c被替换成了c1和c2两个变量,而c1、d和e右边的表达式都是一样的,并且它们的值不会再发生变化。所以,我们可以马上消除掉这些公共子表达式,从而减少了两次计算,这就比采用SSA之前的优化效果更好了。最重要的是,整个过程根本不需要做数据流分析。
|
|||
|
|
|||
|
![](https://static001.geekbang.org/resource/image/43/4a/43f0107ffec76d69deaeb61cd8a7094a.jpg)
|
|||
|
|
|||
|
图3:把公共子表达式a+b消除掉
|
|||
|
|
|||
|
好,在掌握了SSA格式的特点以后,我们还可以注意到,Java和JavaScript的两大编译器,在做优化时,竟然都不约而同地用到了Sea Of Nodes这种数据结构。它看起来非常重要,所以,我们再接着来总结一下,符合SSA格式的Sea of Nodes,都有什么特点。
|
|||
|
|
|||
|
### Sea of Nodes的特点总结
|
|||
|
|
|||
|
其实在[解析Graal编译器](https://time.geekbang.org/column/article/256914)的时候,我就提到过,**Sea of Nodes的特点是把数据流图和控制流图合二为一,从而更容易实现全局优化**。因为采用这种IR,代码并没有一开始就被限制在一个个的基本块中。直到最后生成LIR的环节,才会把图节点Schedule到各个基本块。作为对比,采用基于CFG的IR,优化算法需要让代码在基本块内部和基本块之间移动,处理起来会比较复杂。
|
|||
|
|
|||
|
在这里,我再带你把生成IR的过程推导一遍,你能从中体会到生成Sea of Nodes的思路,并且还会有一些惊喜的发现。
|
|||
|
|
|||
|
示例函数或方法是下面这样:
|
|||
|
|
|||
|
```
|
|||
|
int foo(int b){
|
|||
|
a = b;
|
|||
|
c = a + b;
|
|||
|
c = b;
|
|||
|
d = a + b;
|
|||
|
e = a + b;
|
|||
|
return e;
|
|||
|
}
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
**那么,为它生成IR图的过程是怎么样的呢?**
|
|||
|
|
|||
|
第1步,对参数b生成一个节点。
|
|||
|
|
|||
|
第2步,对于a=b,这里并没有形成一个新的值,所以在后面在引用a和b的时候,都指向同一个节点就好。
|
|||
|
|
|||
|
第3步,对于c=a+b,生成一个加法节点,从而形成一个新的值。
|
|||
|
|
|||
|
![](https://static001.geekbang.org/resource/image/5b/a2/5b6252680b4a2eb98e816556baa92fa2.jpg)
|
|||
|
|
|||
|
第4步,对于c=b,实际上还是直接用b这个节点就行了,并不需要生成新节点。
|
|||
|
|
|||
|
![](https://static001.geekbang.org/resource/image/fe/59/fe507edf931c557fbb38cd68fe55c059.jpg)
|
|||
|
|
|||
|
第5步和第6步,对于d=a+b和e=a+b,你会发现它们都没有生成新的值,还是跟c1用同一个节点表示就行。
|
|||
|
|
|||
|
![](https://static001.geekbang.org/resource/image/55/3d/5565188f1cfaba3662aed7f31c43d53d.jpg)
|
|||
|
|
|||
|
第7步,对于return语句,这时候生成一个return节点,返回上面形成的加法节点即可。
|
|||
|
|
|||
|
![](https://static001.geekbang.org/resource/image/a0/bf/a082908d62e8c0ccbd0b5c2bbcdebdbf.jpg)
|
|||
|
|
|||
|
从这个例子中你发现了什么呢?原来,**采用Sea of Nodes作为IR,在生成图的过程中,顺带就可以完成很多优化了**,比如可以消除公共子表达式。
|
|||
|
|
|||
|
所以我希望,通过上面的例子,你能进一步抓住Sea of Nodes这种数据结构的特点。
|
|||
|
|
|||
|
但是,**Sea of Nodes只有优点,没有缺点吗?**也不是的。比如:
|
|||
|
|
|||
|
* 你在检查生成的IR、阅读生成的代码的时候,都会更加困难。因为产生的节点非常多,会让你头晕眼花。所以,这些编译器都会特别开发一个**图形化的工具**,来帮助我们更容易看清楚IR图的脉络。
|
|||
|
* 对图的访问,代价往往比较大。当然这也可以理解。因为你已经知道,对树的遍历是比较简单的,但对图的遍历算法就要复杂一些。
|
|||
|
* 还有,当涉及效果流的时候,也就是存在内存读写等操作的时候,我们对控制流做修改会比较困难,因为内存访问的顺序不能被打乱,除非通过优化算法把固定节点转换成浮动节点。
|
|||
|
|
|||
|
总体来说,**Sea of Nodes的优点和缺点都来自图这种数据结构**。一方面,图的结构简化了程序的表达;另一方面,要想对图做某些操作,也会更困难一些。
|
|||
|
|
|||
|
### 从高到低的多层次IR
|
|||
|
|
|||
|
对于IR来说,我们需要总结的另一个特点,就是编译器需要从高到低的多个层次的IR。在编译的过程中,高层次的IR会被不断地Lower到低层次的IR,直到最后翻译成目标代码。通过这样层层Lower的过程,程序的语义就从高级语言,一步步变到了汇编语言,中间跨越了巨大的鸿沟:
|
|||
|
|
|||
|
* 高级语言中**对一个数组元素的访问**,到汇编语言会翻译成对内存地址的计算和内存访问;
|
|||
|
* 高级语言中**访问一个对象的成员变量**,到汇编语言会以对象的起始地址为基础,计算成员变量相对于起始地址的偏移量,中间要计算对象头的内存开销;
|
|||
|
* 高级语言中对于**本地变量的访问**,到汇编语言要转变成对寄存器或栈上内存的访问。
|
|||
|
|
|||
|
在采用Sea of Nodes数据结构的时候,编译器会把图中的节点,从代表高层次语义的节点,逐步替换到代表低层次语义的节点。
|
|||
|
|
|||
|
以TurboFan为例,它的IR就包含了几种不同层次的节点:
|
|||
|
|
|||
|
* 抽象度最高的,是复杂的JavaScript节点;
|
|||
|
* 抽象度最低的,是机器节点;
|
|||
|
* 在两者之间的,是简化的节点。
|
|||
|
|
|||
|
伴随着编译的进程,我们有时还要进行IR的转换。比如GraalVM,会从HIR转换到LIR;而Julia的编译器则从自己的IR,转换成LLVM的IR;另外,在LLVM的处理过程中,其IR的内部数据结构也进行了切换。一开始使用的是**便于做机器无关的优化的结构,之后转换成适合生成机器码的结构**。
|
|||
|
|
|||
|
好,总结完了IR,我们再来看看编译器对IR的处理,比如各种分析和优化算法。
|
|||
|
|
|||
|
## 对优化算法的总结
|
|||
|
|
|||
|
编译器基于IR,主要做了三种类型的处理。第一种处理,就是我们前面说的**层层地做Lower**。第二种处理,就是**对IR做分析**,比如数据流分析。第三种处理,就是**实现各种优化算法**。编译器的优化往往是以分析为基础。比如,活跃性分析是死代码消除的基础。
|
|||
|
|
|||
|
前面我也说过,编译器在中端所做的优化,基本上都是机器无关的优化。那么在考察了7种编译器以后,我们来总结一下这些编译器做优化的特点。
|
|||
|
|
|||
|
**第一,有些基本的优化,是每个编译器都会去实现的。**
|
|||
|
|
|||
|
比如说,我们见过的常数折叠、代数简化、公共子表达式消除等。这些优化还可能发生在多个阶段,比如从比较早期的语义分析阶段,到比较晚期的基于目标代码的窥孔优化,都使用了这些优化算法。
|
|||
|
|
|||
|
**第二,对于解释执行的语言,其编译器能做的优化是有限的。**
|
|||
|
|
|||
|
前面我们见到了代码在JVM的解释器、Python的解释器、V8的解释器中运行的情况,现在我们来总结一下它们的运行时的特点。
|
|||
|
|
|||
|
**Python**对代码所做的优化非常有限,在解释器中执行的性能也很低。最重要的原因,是所有的类型检查都是在运行期进行的,并且会根据不同的类型选择执行不同的功能。另外,Python所有的对象都是在堆里申请内存的,没有充分利用栈来做基础数据类型的运算,这也导致了它的性能损耗。
|
|||
|
|
|||
|
**JVM**解释执行的性能要高一些,因为Java编译器已经做了类型检查,并针对不同数据类型生成了不同的指令。但它只做了一些简单的优化,一些无用的代码并没有被消除掉,对Java程序性能影响很大的内联优化和逃逸分析也都没有做。它基于栈的运行机制,也没有充分发挥寄存器的硬件能力。
|
|||
|
|
|||
|
**V8的Ignition解释器**在利用寄存器方面要比JVM的解释器有优势。不过,它的动态类型拖了后腿,这跟Python是一样的。
|
|||
|
|
|||
|
**第三,对于动态类型的语言,优化编译的首要任务是做类型推断。**
|
|||
|
|
|||
|
**以V8的TurboFan为例**,它对类型信息做不同的推断的时候,优化效果是不同的。如果你一开始运行程序,就逼着TurboFan马上做编译,那么TurboFan其实并不知道各个变量的类型信息,因此只能生成比较保守的代码,它仍然是在运行时进行类型检查,并执行不同的逻辑。
|
|||
|
|
|||
|
而一旦通过运行积累了一定的统计数据,TurboFan就可以大胆地做出类型的推断,从而生成针对某种类型的优化代码。不过,它也一定要为自己可能产生的推理错误做好准备,在必要的时候执行**逆优化功能**。
|
|||
|
|
|||
|
**Julia也是动态类型的语言,但它采取了另一个编译策略。**它会为一个函数不同的参数类型组合,编译生成对应的机器码。在运行时,根据不同的函数参数,分派到不同的函数版本上去执行,从而获得高性能。
|
|||
|
|
|||
|
**第四,JIT编译器可以充分利用推理性的优化机制,这样既节省了编译时间,又有可能带来比AOT更好的优化效果。**
|
|||
|
|
|||
|
**第五,对于面向对象的语言,内联优化和逃逸分析非常重要。**
|
|||
|
|
|||
|
在分析Graal编译器和V8的TurboFan编译器的过程中,我都特别强调了内联优化和逃逸分析的作用。内联优化不仅能减少对若干短方法调用的开销,还能导致进一步的优化;而逃逸分析能让很多对象在栈上申请内存,并实现标量替换、锁消除等优化,从而获得极大的性能提升。
|
|||
|
|
|||
|
**第六,对于静态类型的语言,不同的编译器的优化程度也是不同的。**
|
|||
|
|
|||
|
很多工程师经常会争论哪个语言的性能更高。不过在学了编译原理之后,其实可以发现这根本不用争论。你可以设计一些示例程序,测试不同的编译器优化后生成的汇编代码,从而自己得出结论。
|
|||
|
|
|||
|
现在,我用一个示例程序,来带你测试一下Graal、Go和Clang三个编译器处理数组加法的效率,你可以借此了解一下它们各自的优化力度,特别是看看它们有没有自动向量化的支持,并进一步了解不同语言的运行机制。
|
|||
|
|
|||
|
首先来看看**Java**,示例代码在SIMD.java中。其中的add方法,是把一个数组的所有值汇总。
|
|||
|
|
|||
|
```
|
|||
|
private static int add(int a[]){
|
|||
|
int sum = 0;
|
|||
|
for (int i=0; i<a.length; i++){
|
|||
|
sum = sum + a[i];
|
|||
|
}
|
|||
|
return sum;
|
|||
|
}
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
我们还是**用Graal做即时编译**,并打印出生成的汇编代码。这里我截取了其中的主要部分,给你做了分析:
|
|||
|
|
|||
|
![](https://static001.geekbang.org/resource/image/53/ed/53026bbf637749c84baa725b2f13e4ed.jpg)
|
|||
|
|
|||
|
分析这段汇编代码,你能得到下面的信息:
|
|||
|
|
|||
|
* Java中的数组,其头部(在64位环境下)占据16个字节,其中包含了数组长度的信息。
|
|||
|
* Java生成的汇编代码,在每次循环开始的时候,都要检查下标是否越界。这是一个挺大的运算开销。其实我们使用的数组下标**i**,永远不会越界,所以本来可以优化得更好。
|
|||
|
* 上述汇编代码并没有使用SIMD指令,没有把循环自动向量化。
|
|||
|
|
|||
|
我们再来看一下**Go语言**的优化效果,示例代码在SIMD.go中。
|
|||
|
|
|||
|
```
|
|||
|
package main
|
|||
|
|
|||
|
func add(a []int) int {
|
|||
|
sum := 0;
|
|||
|
for i:=0; i<len(a); i++{
|
|||
|
sum = sum + a[i]
|
|||
|
}
|
|||
|
return sum;
|
|||
|
}
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
我们生成Go语言特有的伪汇编以后,是下面这个样子:
|
|||
|
|
|||
|
![](https://static001.geekbang.org/resource/image/a1/f6/a14f285204e8bd6742550e3460b965f6.jpg)
|
|||
|
|
|||
|
我们拿它跟Graal生成的汇编代码做比较,会发现其中最重要的差别,是Go的编译器消除了下标检查,这是一个挺大的进步,能够提升不少的性能。不过,你也可以测试一下,当代码中的“len(a)”替换成随意的一个整数的时候,Go的编译器会生成什么代码。它仍然会去做下标检查,并在下标越界的时候报错。
|
|||
|
|
|||
|
不过,**令人遗憾的是,Go语言的编译器仍然没有自动生成向量化的代码。**
|
|||
|
|
|||
|
最后,我们来看一下**Clang**是如何编译同样功能的一个C语言的程序的(SIMD.c)。
|
|||
|
|
|||
|
```
|
|||
|
int add(int a[], int length){
|
|||
|
int sum = 0;
|
|||
|
for (int i=0; i<length; i++){
|
|||
|
sum = sum + a[i];
|
|||
|
}
|
|||
|
return sum;
|
|||
|
}
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
编译生成的汇编代码在SIMD.s中。我截取了其中的骨干部分:
|
|||
|
|
|||
|
![](https://static001.geekbang.org/resource/image/d5/2b/d5fd965231ba19e94595ecc2ae24be2b.jpg)
|
|||
|
|
|||
|
你已经知道,Clang是用LLVM做后端的。在它生成的汇编代码中,对循环做了三种优化:
|
|||
|
|
|||
|
* **自动向量化**:用movdqu指令,一次能把4个整数,也就是16个字节、128位数据拷贝到寄存器。用paddd指令,可以一次实现4个整数的加法。
|
|||
|
* **循环展开**:汇编代码里,在一次循环里执行了8次SIMD的add指令,因为每次相当于做了4个整数的加法,因此每个循环相当于做了源代码中32次循环的工作。
|
|||
|
* **指令排序**:你能看到,由于一个循环中有很多个指令,所以这就为指令排序提供了机会。另外你还能看到,在这段汇编代码中,集中做了多次的movdqu操作,这可以更好地让指令并行化。
|
|||
|
|
|||
|
通过这样的对比,你会发现LLVM做的优化是最深入的。所以,如果你要做计算密集型的软件,如果能做到像LLVM这样的优化程度,那就比较理想了。
|
|||
|
|
|||
|
不过,做比较深入的优化也不是没有代价的,那就是编译时间会更长。而Go语言的编译器,在设计之初,就把编译速度当成了一个重要的目标,因此它没有去实现自动向量化的功能也是可以理解的。
|
|||
|
|
|||
|
如果你要用Go语言开发软件,又需要做密集的计算,那么你有两个选择。一是用Go语言提供的内置函数(intrincics)去实现计算功能,这些内置函数是直接用汇编语言实现的。二是Go语言也提供了一个基于LLVM的编译器,你可以用这个编译器来获得更好的优化效果。
|
|||
|
|
|||
|
## 课程小结
|
|||
|
|
|||
|
这一讲,我带你全面系统地总结了一下“解析篇”中,各个实际编译器的IR和优化算法。通过这样的总结,你会对如何设计IR、如何做优化,有一个更加清晰的认识。
|
|||
|
|
|||
|
从IR的角度来看,你一定要采用SSA格式的IR,因为它有显著的优点,没有理由不采用。不过,如果你打算自己编写各种优化算法,也不妨进一步采用Sea of Nodes这样的数据结构,并借鉴Graal和V8的一些算法实现。
|
|||
|
|
|||
|
不过,自己编写优化算法的工作量毕竟很大。在这种情况下,你可以考虑复用一些后端工具,包括LLVM、GraalVM和GCC。
|
|||
|
|
|||
|
本讲的思维导图我也放在了下面,供你参考:
|
|||
|
|
|||
|
![](https://static001.geekbang.org/resource/image/80/87/80e13cef697dc076c9646b49140b4787.jpg)
|
|||
|
|
|||
|
## 一课一思
|
|||
|
|
|||
|
今天我带你测试了Graal、Go和Clang三个编译器,在SIMD方面编译结果的差异。那么,你能否测试一下这几个编译器在其他方面的优化表现?比如循环无关代码外提,或者你比较感兴趣的其他优化。欢迎在留言区分享你的测试心得。
|
|||
|
|
|||
|
如果你还有其他的问题,欢迎在留言区提问,我会逐一解答。最后,感谢你的阅读,如果今天的内容让你有所收获,也欢迎你把它分享给更多的朋友。
|
|||
|
|